Ритмы головного мозга: общие сведения, классификация

Расшифровка ЭЭГ у детей и взрослых

Что показывает ЭЭГ головного мозга, какие ритмы и волны встречаются на энцефалограмме в норме и при заболеваниях, как проводится расшифровка показателей ЭЭГ, к какому врачу лучше обращаться на консультацию с заключением электроэнцефалограммы?

ЭЭГ позволяет записать биоэлектрическую активность различных участков головного мозга, зафиксировать полученные результаты на бумаге или на экране компьютерного монитора. В итоге получается графическая кривая в виде различных по высоте, амплитуде, продолжительности ритмов, среди которых могут встречаться патологические элементы. Проводится анализ полученных результатов.

Ритмы ЭЭГ

На электроэнцефалограмме можно выделить четыре основных ритма ЭЭГ головного мозга – альфа, бета, дельта и тета.

  1. Альфа-ритм (или альфа-волны) – основной компонент энцефалограммы здорового взрослого человека (регистрируется у 85-90% людей). Такие волны в норме имеют частоту от 8 до 13 герц (колебаний в секунду) и являются преобладающими в состоянии бодрствования (когда пациент спокойно лежит с закрытыми глазами). Максимальная альфа-активность определяется в затылочной и теменной области.
  2. Бета-ритм также, как и альфа-волны относится к нормальным проявлениям функциональной деятельности человека. При этом частота колебаний составляет 14-35 в секунду, и регистрируют их преимущественно над лобными долями головного мозга. Бета ритм ЭЭГ появляется при раздражении органов чувств (прикосновении, световой, звуковой стимуляции), движениях, умственной активности.
  3. Дельта-ритм (частота 0,5-3 Гц) при расшифровке ЭЭГ обнаруживается в норме у ребенка первого года жизни, частично сохраняясь иногда до семилетнего возраста. В дальнейшем дельта-волны фиксируются в основном во время сна.
  4. Тета-ритм энцефалограммы (частота от 4 до 7 колебаний в секунду) в норме встречается у детей от 1 до 6 лет, постепенно замещаясь по мере взросления на альфа-ритм. Отмечается тета-активность и во время сна, в том числе у взрослых.

Что показывает ЭЭГ у детей и взрослых

У новорожденных и детей раннего возраста при расшифровке ЭЭГ преобладают медленные волны на электроэнцефалограмме (дельта и тета-ритм). Однако уже к году жизни альфа-ритм делается все более активным и к 8-9 годам становится преобладающим.

Полностью ЭЭГ картина, характерная для взрослого человека, формируется к 16-18 годам и сохраняется в относительно стабильном виде примерно до 50 лет.

По мере старения организма доминирование альфа-ритма становится не столь выраженным и к 60-70 годам в норме (как в детском возрасте) регистрируются и медленные дельта и тета-волны на ЭЭГ.

Расшифровка показателей энцефалограммы

Теперь о том, как проводится расшифровка ЭЭГ головного мозга. Анализирует энцефалограмму и выдает заключение врач-невролог (нейрофизиолог), учитывая возраст пациента, его жалобы, клиническую картину имеющихся нарушений и другие факторы.

  1. Выявляется основной, преобладающий ритм энцефалограммы (у большинства здоровых взрослых людей и подростков – это альфа-ритм).
  2. Изучается симметричность электрических потенциалов нервных клеток, регистрируемых с левого и правого полушарий головного мозга.
  3. Анализируются имеющиеся на ЭЭГ патологические ритмы, например, дельта и тета-ритм у взрослых в состоянии бодрствования.
  4. Проверяется регулярность биоэлектрической активности, амплитуда ритмов
  5. Выявляется пароксизмальная активность на электроэнцефалограмме, наличие острых волн, пиков, спайк-волн
  6. При отсутствии патологических изменений на фоновой энцефалограмме проводятся функциональные тесты (фотостимуляция, гипервентиляция и др.), повторная регистрация электрических потенциалов головного мозга и расшифровка ЭЭГ.

Что показывает электроэнцефалограмма при эпилепсии

  • Регистрация ЭЭГ во время эпилептического приступа позволяет зафиксировать высокоамплитудную пароксизмальную активность в виде пик-волн и острых волн
  • Вне приступа судорожная готовность мозга может не проявляться, поэтому для провокации эпилептической активности используются различные пробы. Часто свидетельством пароксизмальной активности является наличие высоковольтных тета и дельта-волн
  • Для длительной регистрации энцефалограммы головного мозга можно использовать ЭЭГ мониторинг или видео-ЭЭГ-мониторинг (регистрация электроэнцефалограммы и видеосъемка поведения пациента в течение 3-8 часов, иногда на протяжении суток) с последующей расшифровкой.

Расшифровка ЭЭГ при других неврологических расстройствах

  • Наиболее частым признаком органических заболеваний головного мозга – опухолей, черепно-мозговых травм, сосудистых нарушений, является наличие межполушарной ассиметрии, замедление частоты ритма электроэнцефалограммы, а также появление признаков пароксизмальной активности в отдельных участках мозга
  • Для диагностики нарушений сна и связанных с этим проблем (храп, бессонница, синдром обструктивного апноэ сна) зачастую необходимо проведение полисомнографии (изучается ЭЭГ, ЭКГ, нервно-мышечная проводимость, насыщение крови кислородом, тяжесть храпа, дыхание, движения ног, рук, глаз…)
  • Достаточно широко используется анализ энцефалограммы в динамике при последствиях родовых травм у ребенка, при задержке психического, моторного и речевого развития у детей. При этом расшифровка основывается на изучении различных косвенных признаков (замедление формирования альфа-ритма с низкой амплитудой и дезорганизацией, преобладание медленных волн в состоянии бодрствования в возрасте 5-7 лет и старше, смещение фокуса активности в передние отделы головного мозга и др.).

К какому врачу обращаться на консультацию с заключением ээг?

Расшифровка ЭЭГ помогает в диагностике многих заболеваний, однако для постановки правильного диагноза важнее всего внимательный осмотр пациента врачом-неврологом (эпилептологом), анализ имеющихся жалоб, клиники, данных МРТ, КТ и других исследований. Заключение ЭЭГ имеет смысл только с учетом вышеперечисленных обследований и индивидуальных особенностей (имеющихся проблем) данного конкретного человека.

При этом запись на консультацию врача эпилептолога с результатами ЭЭГ будет наилучшим выбором, ведь этот специалист лучше разбирается в расшифровке энцефалограммы и сможет разграничить изменения. встречающиеся при эпилепсии от других схожих расстройств (ВСД, простые обмороки, болезни сердца и т.п.).

Если необходимо назначение противосудорожных препаратов и коррекция их приема в динамике, врач-эпилептолог также сможет подобрать наилучшую комбинацию эффективных лекарственных средств для данного конкретного пациента с учетом возраста, общего состояния здоровья и наличия сопутствующих заболеваний. Если такого специалиста в вашем городе нет, обращайтесь на консультацию детского или взрослого невролога.

Источник: https://medblog.by/diagnostika/rasshifrovka-eeg/

Электроэнцефалография (ЭЭГ)

Электроэнцефалография (ЭЭГ) — метод оценки состояния головного мозга, основанный на регистрации его электрических потенциалов.

ЭЭГ отражает суммарную активность огромного множества нервных элементов мозга проявляющуюся в возникновении синаптических электрических потенциалов, является основным методом оценки функционального состояния центральной нервной системы (ЦНС), чувствительна к колебаниям внутреннего состояния организма.

Она изменяется в зависимости от уровня бодрствования, а также под влиянием внешних воздействий.

ЭЭГ детей имеет свои особенности, соответствующие возрасту ребенка. Процесс формирования ЭЭГ происходит постепенно. Завершается он к 16—18 годам.

ЭЭГ взрослого человека индивидуальна, в ней в определенной степени отражены его личностные особенности.

Обратите внимание

С 50-60-летнего возраста на состоянии биоэлектрической активности мозга начинают сказываться процессы старения организма.

Сложный узор ЭЭГ определяется не только функциональной активностью поверхностных слоев головного мозга, но и дистантными влияниями с глубинных структур.

Формы биоэлектрической активности мозга

На ЭЭГ регистрируются регулярные ритмы, соответствующие определенному частотному диапазону. Выделяют: дельта-ритм, частота 1—3,5 в 1 с; тета-ритм, частота 4—7 в 1 с; альфа-ритм, частота 8—13 в 1 с; бета-ритм, частота 14 в 1 с и более.

Биоэлектрическая активность мозга билатерально симметрична. Это свойство определяется диффузными влияниями неспецифических систем мозга.

Альфа- и бета-активность считаются нормальными компонентами ЭЭГ. Периодические модуляции амплитуды придают альфа-активности веретенообразную форму.

Существует градиент амплитуды альфа-ритма по областям полушарий, ее снижение от задних отделов к передним. Наибольшую амплитуду имеет альфа-ритм в затылочных областях (до 100 мкВ).

Выраженность альфа-ритма может существенно варьировать. У взрослых людей встречаются варианты, когда альфа-ритм представлен очень слабо, а иногда и полностью отсутствует.

Бета-ритм имеет амплитуду 10—15 мкВ, обычно не более 30 мкВ, лучше выражен в лобно-центральных областях. В зависимости от представленности альфа-ритма варьирует и выраженность бета-активности. При слабо выраженном альфа-ритме становится преобладающей формой биопотенциалов.

Дельта- и тета-ритмы относят к патологическим компонентам ЭЭГ. Однако наличие одиночных медленных волн или групп нерегулярных колебаний небольшой амплитуды (15—20 мкВ), особенно в передних отделах, допустимо и в норме.

Особым видом патологической активности мозга является химическая активность, в основе возникновения которой лежит избыточная синхронизация активности огромного числа нейронов.

Классическими электроэнцефалографическими эпифеноменами[1] следует рассматривать острые амплитудные волны, пики, комплексы пик-волна, острая волна — медленная волна.

Пик — потенциал пикоподобной формы, длительность 5—50 мс, амплитуда как правило, превосходит фоновую активность и может быть значительной. Пики чаще всего группируются в пачки различной продолжительности.

Острая волна внешне напоминает пик, но более растянутый во времени, длительность волны больше 50 мс, амплитуда различная — 20-200 мкВ и более.

Пик-волна представляет собой комплекс, возникающий от комбинации пика с медленной волной.

Острая волна — медленная волна есть комплекс, напоминающий по форме комплекс пик-волна, но имеющий большую длительность.

Перечисленные формы биоэлектрической активности мозга в зависимости от их проявления во времени могут обозначаться терминами «периоды», «разряды», «вспышки», «пароксизмы», «комплексы».

Выявлению скрытой патологии мозга способствуют функциональные нагрузки: ритмические световые раздражения, звуковые стимулы, гипервентиляция.

ЭЭГ-исследования при различных заболеваниях

ЭЭГ-исследования при различных заболеваниях — неврологических, соматических, психических — дают важную информацию:

1) наличие и степень выраженности поражения мозга;

2) локальную диагностику поражения мозга;

3) динамику состояния мозга.

Следует подчеркнуть, что изменения ЭЭГ нозологически неспецифичны. Данные ЭЭГ должны использоваться только в сопоставлении с клиническими данными и результатами других методов исследования.

Основными показаниями для проведения ЭЭГ-исследований являются:

1) эпилепсия, неэпилептические кризовые состояния, мигрени;

2) объемные поражения мозга;

3) сосудистые поражения мозга;

4) черепно-мозговая травма;

5) воспалительные заболевания головного мозга.

Диагностическая роль ЭЭГ при различных заболеваниях неоднозначна. В случае тяжелых очаговых поражений мозга (опухоль, инсульт, травма) наибольшую значимость имеет топическая диагностика. Локальные сдвиги на ЭЭГ чаще всего проявляются медленными колебаниями, выделяющимися в амплитуде над фоновой активностью.

Изменения биопотенциалов оказываются более четкими и локализованными при поверхностном расположении патологического процесса более обширными, с распространением на другие отделы мозга — при поражении в глубине полушария.

Поражения ствола или других срединных структур мозга обычно сопровождаются разрядами билатерально-синхронных колебаний.

Важно

При заболеваниях с грубой очаговой симптоматикой оценка состояния трудоспособности обычно не вызывает затруднений. В этих случаях наличие стойких локальных изменений ЭЭГ является объективным подтверждением тяжести состояния.

Локальные ЭЭГ-нарушения после травм, инсультов, сохраняющиеся длительное время, в течение нескольких лет указывают на стойкую недостаточность функционирования соответствующих участков мозга.

Особое назначение имеет ЭЭГ для обнаружения и локализации эпилептических изменений, встречающихся при личных церебральных заболеваниях, приводящих к инвалидности, например, после тяжелых черепно-мозговых травм, нейроинфекций. Отсутствие соответствующих эпилептических потенциалов на ЭЭГ оказывается решающим фактором при дифференциальной диагностике в случае кризовых состояний неэпилептического характера.

При анализе ЭЭГ, помимо указаний на локальные сдвиги биопотенциалов, важное значение имеет характеристика диффузных изменений. При очаговых церебральных поражениях они отражают реакцию мозга в целом на локальный патологический процесс.

В общем функциональном состоянии ЦНС находят отражение ее компенсаторные возможности.

Бывают случаи, когда несмотря на тяжелые морфологические изменения, имеет место высокая приспособляемость ЦНС, обеспечивающая сохранение работоспособности, а иногда, наоборот, при относительно незначительных симптомах хронического заболевания трудоспособность оказывается сниженной из-за недостаточной компенсаторной приспособляемости организма. О компенсаторных возможностях ЦНС можно судить по ЭЭГ-исследованиям в динамике. Отсутствие или отрицательная динамика локальных или диффузных сдвигов ЭЭГ свидетельствует о низких функциональных резервах организма, и наоборот.

В связи с изложенным, большую ценность приобретает информация об особенностях общего функционального состояния при самых разнообразных заболеваниях: сосудистых нарушениях, таких как гипертоническая болезнь, атеросклероз, вертебрально-базилярная недостаточность, часто развивающаяся в результате остеохондроза позвоночника, при мигренях, вегетативно-сосудистых дистониях, эндокринных расстройствах, последствиях черепно-мозговых травм и нейроинфекций, неврозах, разнообразных астенических, неврастенических и психастенических состояниях. Многие из перечисленных заболеваний встречаются как дополнительные к основному страданию, повлекшему за собой инвалидность.

Лимбико-ретикулярный комплекс

Согласно современным нейрофизиологическим данным, в нарушении целостной деятельности мозга важную роль играет состояние лимбико-ретикулярного комплекса, представляющего собой сложную многоуровневую систему нервных образований, объединенных морфологически и функционально.

В комплекс включаются ретикулярные структуры продолговатого мозга, структуры понто-мезенцефальной покрышки, субталамическая область, срединные и интраталамические ядра таламуса, область заднего гипоталамуса, некоторые структуры обонятельного мозга, некоторые лимбические образования, некоторые базальные ганглии (хвостовое ядро) ассоциативные зоны лобной коры мозга.

Совет

Деятельность различных отделов мозга реализуется через механизмы лимбико-ретикулярного комплекса, который управляет уровнем бодрствования, регулирует церебральный гомеостаз, контролирует многие вегетативные и поведенческие реакции организма. Он оказывает организующее влияние на биоэлектрическую активность мозга.

Читайте также:  Флувоксамин: инструкция по применению, отзывы, аналоги, цена

Изменения в деятельности регулирующих систем могут быть обусловлены разными причинами: первичными деструктивными изменениями тех или иных отделов мозга или состоянием самих регулирующих механизмов в результате нарушения кровоснабжения соответствующих глубинных структур или как отдаленные последствия травм, нейроинфекций, приводящих к усиленной активности выпадению отдельных звеньев лимбико-ретикулярного комплекса.

Классификация Е. А. Жирмунской и В. С. Лосева

Для оценки целостного паттерна ЭЭГ можно пользоваться классификацией Е. А. Жирмунской и В. С. Лосева (1994), разделивших все встречающиеся варианты ЭЭГ на пять типов.

Тип I — организованный. Основной компонент ЭЭГ — альфа-ритм, характеризующийся высокой степенью регулярности, хорошо модулированный, имеет хороший или слабо измененный амплитудный градиент по областям мозга. Относится к норме или допустимым вариантам нормы.

Тип II — гиперсинхронный (моноритмичный). Отличается чрезмерно высокой регулярностью колебаний, нарушением зональных различий.

Возможны варианты усиления синхронизации: с усилением колебаний альфа-диапазона; с исчезновением альфа-ритма и заменой его на бета-активность низкой частоты или тета-активность.

При малой и средней амплитуде биопотенциалов изменения ЭЭГ могут быть оценены как легко или умеренно нарушенные, а при большой амплитуде (от 70—80 мкВ и более) — как значительно нарушенные.

Тип III — десинхронный, характеризуется почти полным отсутствием или резким ослаблением альфа-активности, с увеличением числа бета-колебаний или без такового, а также наличием небольшого количества медленных волн. Общий амплитудный уровень невысокий, иногда низкий или очень низкий (до 15 мкВ). В зависимости от амплитуды изменения ЭЭГ оцениваются как легко или умеренно нарушенные.

Тип IV — дезорганизованный (с преобладанием альфа-активности). Альфа-активность недостаточно регулярная или совсем нерегулярная по частоте, имеет достаточно высокую амплитуду, может доминировать во всех областях мозга.

Бета-активность нередко усилена, часто представлена колебаниями низкой частоты увеличенной амплитуды. Наряду с этим могут регистрироваться тета- и дельта-волны, имеющие довольно высокую амплитуду.

В зависимости от степени дезорганизации альфа-активности и степени выраженности патологических компонентов, изменения оцениваются как умеренно или значительно нарушенные.

Тип V — дезорганизованный (с преобладанием тета- и дельта-активности). Альфа-активность выражена плохо. Биопотенциалы альфа-, бета-, тета- и дельта-частотных диапазонов регистрируются без четкой последовательности; наблюдается бездоминантный характер кривой. Амплитудный уровень средний или высокий. ЭЭГ этой группы оцениваются как очень грубо нарушенные.

Дисфункция разных уровней мозга, разных уровней лимбико-ретикулярного комплекса характеризуется соответствующими изменениями на ЭЭГ.

Десинхронизация биопотенциалов с доминированием на ЭЭГ бета-активности высокой частоты и снижением общего амплитудного уровня свидетельствует о высокой активности ретикулярной формации среднего мозга и продолговатого мозга.

Обратите внимание

Повышенная синхронизация биопотенциалов связана с усилением влияния со стороны таламических и гипоталамических образований, а также тормозного центра Моруцци в каудальном отделе мозга.

Оценка ЭЭГ с учетом роли лимбико-ретикулярного комплекса в организации интегративной деятельности мозга способствует пониманию патогенетических механизмов ряда заболеваний и патологических состояний, сопровождающихся нестабильностью: вегетативных реакций и нарушениями психоэмоционального статуса человека.

Отражение в показателях ЭЭГ состояния регулирующих систем мозга значительно расширяет возможности практического использования данных ЭЭГ в системе врачебно-трудовой экспертизы, трудоустройства и реабилитации инвалидов.

Медицинская реабилитация / Под ред. В. М. Боголюбова. Книга I. – М., 2010. С. 22-25.

[1] Эпифеномен (греч. epi — при, после, возле и phainomenon — являющееся) — придаток к феномену, побочное явление, сопутствующее другим явлениям, но не оказывающее на них никакого влияния. [Прим. www.reabilitaciya.org]

Источник: http://reabilitaciya.org/zabolevaniya/diagnostika/288-elektroencefalografiya-eeg.html?showall=1

Биология и медицина

=========

Головной мозг располагается в полости мозгового черепа , форма которого определяется формой мозга, некоторыми этническими
особенностями, полом и возрастом. Масса мозга взрослого человека около 1500
г (от 1100 до 2000, т. е. диапазон крайних индивидуальных значений очень
велик). В свою очередь, это давало и дает основания выдвигать представления
о зависимости от массы мозга гениальности; предначертанности поведения
преступников; об умственном преобладании мужчин над женщинами. Однако это
не соответствует действительности. Абсолютная масса мозга не позволяет
судить об интеллекте человека. Любопытные цифры приводит М. А. Гремяцкий:
масса мозга Тургенева была равна 2012 г, Кромвеля – 2000, Байрона -2238,
Кювье – 1830, Шиллера – 1871, Теккерея -1294, поэта Уитмена – 1282, врача
Деллингера – 1207, Анатоля Франса – 1017 г. Несмотря на то что масса мозга
А. Франса была почти в два раза меньше массы мозга И. Тургенева, оба они
были гениальными писателями и мыслителями. Интегративная деятельность
головного мозга обеспечивает целенаправленное поведение человека, его
умственную деятельность. Головной мозг подразделяют на три основных отдела: ствол , мозжечок и полушария большого мозга (конечный мозг) .

Головной мозг – это расширенный передний конец нервной трубки позвоночных, роль которой
состоит в координации и регуляции
всей нервной системы . В целом головной мозг состоит из скоплений тел
нервных клеток , нервных трактов и кровеносных сосудов . Нервные тракты образуют белое вещество мозга и состоят из
пучков нервных волокон , проводящих импульсы
к различным участкам серого вещества
мозга – ядрам или центрам – или от них. Проводящие пути связывают между
собой различные ядра, а так же головной мозг со спинным мозгом . Ядра головного мозга весьма различны
по размерам – от небольших групп, состоящих из нескольких сотен нейронов,
до таких обширных участков, как кора головного мозга и кора мозжечка , включающие миллиарды
клеток.

В функциональном отношении мозг можно разделить на несколько
отделов: передний мозг (состоящий
из конечного мозга и промежуточного мозга ), средний мозг , задний мозг , (состоящий из мозжечка и варолиева моста ) и продолговатый мозг . Продолговатый
мозг, варолиев мост и средний мозг вместе называются стволом головного мозга .

Деятельность головного мозга в целом и все специфические для нервной ткани
процессы (проведение нервного импульса, синаптогенез, хранениеи переработка
поступающей информации, поддержание пространственно-функциональной
архитектоники мозга, образование функциональных ансамблей мозга и др.)
находятся в тесной зависимости от уровня энергетического обмена,
определяемого прежде всего поступлением с кровотоком кислорода и глюкозы в нервную ткань. Составляя около 2% общей массы тела человека, головной
мозг потребляет 20-25% поступающего в организм кислорода и до 70% глюкозы.

По интенсивности дыхания головной мозг занимает ведущее место среди всех
органов. В периоды максимальной активности и быстрого развития (у
новорожденных) он может использовать до 50% поступающего в организм
кислорода.

Собственные запасы глюкозы в ткани мозга чрезвычайно малы по сравнению с
интенсивностью ее потребелния.

———-

Источник: http://medbiol.ru/medbiol/anatomia/00017821.htm

Как ритмы мозга управляют обучением

Мозг корректирует память с помощью электрических ритмов: если мы что-то заучили неправильно, специальный тип волн поможет избавиться от ложной информации.

Известно, что активность нейронов мозга складывается в волны или ритмы, которые можно увидеть на электроэнцефалограмме: альфа-ритм, бета-ритм, гамма-ритм и другие. Ритмы сменяют друг друга в зависимости от того, чем именно в данный момент занимается человек.

Например, альфа-волны появляются во время отдыха, когда мы ничем не заняты, но и не спим; дельта-волны соответствуют глубокому сну без сновидений; если же внимание сконцентрировано на какой-то задаче, то это видно по быстрым тета- и гамма-ритмам.

Важно

Более того, разные области мозга могут генерировать различные волны, потому что выполняют разные задачи.

Наблюдая за динамикой ритмов, можно много сказать о том, как «департаменты» мозга общаются друг с другом и как распределяются обязанности при решении когнитивных задач, связанных с памятью, вниманием и т. д.

Пример альфа- и бета-ритмов на ЭЭГ. (Фото risknfun / Flickr.com.)

Схема человеческого мозга; префронтальная кора окрашена жёлтым, гиппокамп – пурпурным (вытянутый участок внизу справа). (Фото Fernando Da Cunha / BSIP / Corbis.)

В статье, опубликованной в Nature Neuroscience, Эрл Миллер (Earl Miller) и Скотт Бринкэт (Scott Brincat) из Массачусетского технологического института описывают, какие изменения в волновой активности мозга сопровождают запоминание и обучение. Исследователей интересовала не память вообще, а та её форма, которую называют эксплицитной: она отвечает, например, за связь между объектами, событиями и т. д. Мы связываем внешность человека с его именем, а некое событие с местом, где оно произошло, как раз благодаря эксплицитной памяти. Формируется она при активных сознательных усилиях со стороны индивидуума, и есть она не только у человека, но и у животных.

В эксперименте обезьянам показывали пары картинок, так что между некоторыми изображениями должны были установиться прочные связи. Обезьяны учились методом проб и ошибок: им снова и снова показывали картинки, а они должны были предположить, связаны они между собой или нет. Если животное правильно угадывало, что изображённые предметы связаны друг с другом, ему давали угощение. Одновременно исследователи регистрировали активность гиппокампа и префронтальной коры – двух зон мозга, играющих ключевую роль в обучении. Оказалось, что частота волн в них менялась в зависимости от того, правильный или неправильный ответ давала обезьяна. Если результат соответствовал ожиданию, то появлялся бета-ритм с частотой 9-16 Гц. Если же ответ был неправильный, то частота падала до 2-6 Гц, что соответствовало тета-ритму.

Запоминание связано с формированием новых нейронных контуров: синаптические соединения между нейронами поддерживают «ячейку памяти» в рабочем состоянии. Ранее было показано, что сила синапсов (то есть их прочность и эффективность) зависит от того, в каком ритме приходится работать нервным клеткам: если бета-частоты усиливают межклеточные контакты, то тета-частоты, наоборот, ослабляют. Вместе с новыми результатами можно представить такую модель: правильный ответ стимулирует в мозге бета-активность, которая, в свою очередь, укрепляет сформировавшиеся нейронные цепочки – ведь они всё правильно запомнили. Если же нет, то тета-активность аннулирует неправильную память.

Это не первая работа, посвящённая взаимосвязи волн мозга и памяти. Так, в прошлом году нобелевский лауреат Судзуми Тонегава опубликовал вместе с коллегами статью, в которой шла речь о похожих вещах – как мозг корректирует память, если видит неверный результат. Те эксперименты ставили на мышах, и в фокусе внимания были гиппокамп и энторинальная кора (ещё один известный центр памяти). Тогда нейробиологи обнаружили, что сигналом к исправлению информации служат гамма-ритмы, синхронизирующие работу двух зон мозга.

Разумеется, процесс запоминания слишком сложен, чтобы его можно было свести просто к чередованию нескольких типов волн. По изменениям в электрических ритмах мы можем судить о поведении достаточно крупных ансамблей клеток и целых участков мозга в тот момент, когда индивидууму нужно запомнить какую-то новую информацию. Почему один тип ритмов сменяет другой, что за механизм связывает такой замену с правильной или неправильной памятью, исследователям ещё предстоит выяснить. Хотя не исключено, что в будущем у нас появятся стимуляторы памяти, которые будут помогать мозгу переключаться на нужный ритм, когда нам потребуется что-нибудь запомнить.

Источник: https://www.nkj.ru/news/25930/

Итак, биологические ритмы и их классификация

Тема работы: Биологические ритмы и их влияние в режиме для обучающегося.

Немного о том, что же такое биологический ритм.

В ходе исторического развития человек и все другие живые существа, населяющие нашу планету, на всех уровнях организации живой системы, усвоили определенный ритм жизни.

Все живые организмы, начиная от простейших одноклеточных и заканчивая человеком, обладают биологическими ритмами, проявляющимися в периодическом изменении биологических процессов (жизнедеятельности) – развиваются они в тесном взаимодействии с окружающей средой и являются результатом приспособления к тем факторам окружающей среды, которые изменяются с точной периодичностью (ритмические явления природы). Под воздействием циклической деятельности Солнца и вращением Земли вокруг своей оси и вокруг Солнца и возникла периодичность явлений, происходящих в природе.

Из всех ритмических воздействий, поступающих из Космоса на Землю, наиболее сильным является воздействие ритмически изменяющегося излучения Солнца. На поверхности и в недрах нашего светила непрерывно идут процессы, проявляющиеся в виде солнечных вспышек.

Совет

Мощные потоки энергии, выбрасываемые при вспышке, достигая Земли, резко меняют состояние магнитного поля и ионосферы, влияют на распространение радиоволн, сказываются на погоде.

Читайте также:  Фобия боязнь врачей: название фобии стоматологов и уколов, причины и лечение

В результате возникающих на Солнце вспышек изменяется общая солнечная активность, имеющая периоды максимума и минимума.

Излучение Солнца также оказывает влияние на умственную деятельность людей, на творческую активность человека и т.д. и т.п.

Жизнь на нашей планете связана с вращением Земли вокруг своей оси, определяющим суточный ритм, и с вращением вокруг Солнца, от которого на Земле зависит смена времен года. Большинством живых организмов сезонный ритм воспринимается как смена времен года.

Он определяет рост, развитие и гибель растений.

Вращение Земли вокруг своей оси обуславливает ритмичное изменение факторов внешней среды: температуры, освещенности, относительной влажности воздуха, барометрического давления, электрического потенциала атмосферы, космической радиации и гравитации.

Все перечисленные факторы внешней среды оказывают влияние на жизненные процессы живых организмов, среди них особое значение имеет чередование света и темноты.

От суточного режима зависит обмен веществ в растениях — поглощение углекислоты днем и отдача кислорода ночью.

У животных и человека суточные ритмы проявляются в виде чередования периодов бодрствования и активности с периодами сна и покоя.

Обратите внимание

Интенсивность большинства физиологических процессов на протяжении суток имеет тенденцию повышаться в утренние часы и падать в ночное время. Примерно в эти же часы повышается чувствительность органов чувств: человек утром лучше слышит, лучше различает оттенки цветов.

Последовательность взаимодействия различных функциональных систем организма с окружающей средой способствует гармоничному согласованию разных ритмических биологических процессов и обеспечивает нормальную жизнедеятельность целого организма, т.е. выявляется важное адаптивное значение биоритмов для жизнедеятельности организма.

Все живое на Земле развивалось под влиянием суточных и сезонных ритмов.

Итак, биологические ритмы и их классификация

Повторяемость процессов — один из признаков жизни. При этом большое значение имеет способность живых организмов чувствовать время.

Ритмы физиологических процессов в организме, как и любые другие повторяющиеся явления, имеют волнообразный характер (расстояние между одинаковыми положениями двух колебаний называются периодом, иди циклом).

Благодаря биоритмам живой организм гораздо легче приспосабливается к условиям внешней среды, которые регулируют деятельность циклов и отдельных их фаз.

Такое действие внешних условий на живой организм принято называть синхронизирующим, а сами факторы воздействия — синхронизаторами (ких числу относятся свет, шум, запахи, время кормления и т.

д, синхронизация биоритмов с геофизическими ритмами природы имеет большое приспособительное значение).

Функциональные ритмы, обеспечивающие непрерывную жизнедеятельность организма, как правило, имеют короткие циклы — от долей секунды до минут. К их числу относятся, например, циклы нервно-мышечного возбуждения и торможения, а также множество других процессов на уровне молекул, клеток, отдельных органов.

Важно

Иногда функциональные ритмы сочетаются с суточными ритмами. Так, например, в сердце, кишечнике и других органах животных амплитуда ритмов меняется в течение суток.

Происхождение биоритмов определяется двумя факторами — эндогенным (внутренним, врожденным) и экзогенным (внешним, приобретенным).

Экзогенные ритмы полностью зависят от изменения внешней среды. Это биохимические процессы.

Эндогенные ритмы протекают при постоянных оптимальных условиях внешней среды и имеют широкий диапазон частот: от двух тысяч циклов в секунду до одного цикла в год. К эндогенным относятся ритмы сердцебиения, пульса, дыхания, кровяного давления, умственной активности, изменения глубины сна и другое.

Существуют ритмы промежуточного характера. К ним можно отнести, например, серию постепенно затухающих мышечных сокращений, возникающих в результате одиночного внешнего раздражения.

Но, хотя биологические ритмы важны для жизнедеятельности, они вовсе не определяют роковым образом физические, психические возможности человека, а тем более поведение личности в целом. В организме человека имеются беспредельные возможности для компенсации временного снижения тех или иных функций.

Вот и получается, что Биологические ритмыэто периодически повторяющиеся изменения характера и интенсивности биологических процессов и явлений, которые самоподдерживаются и самовоспроизводятся.

«Биологические часы» в организме — это отражение суточных, сезонных, годовых и других ритмов физиологических процессов, т.е. цикличность процессов, протекающих в живом организме.

Биоритмы характеризуются: периодом — продолжительностью одного цикла колебаний в единицу времени; частотой ритмов – частотой периодических процессов в единицу времени; фазой – частью цикла, измеряемой в долях периода (начальная, конечная и т.д.); амплитудой – размахом колебаний между максимумом и минимумом.

По продолжительности (период – Т) выделяют следующие циклы:

· высокочастотные — продолжающиеся до 30 минут (колебания биоэлектрической активности Головного мозга, сердца, мышц, других органов и тканей; ритмика внешнего дыхания)

· среднечастотные — от 0,5 до 24 часов, 20-28 часов и 29 часов — 6 суток (биоритмы с T от получаса до нескольких часов – ультрадианные. Наиболее важные из них имеют T около 90 мин.

– происходит чередование различных стадий сна, высокой работоспособности и относительной расслабления. Биоритмы с T=20–28 ч.

называют околосуточными (циркадианными, циркадными) – периодические колебания t тела, частоты пульса.

· низкочастотные — с периодом 7 суток, 20 суток, 30 суток, около одного года (околонедельные, околомесячные, сезонные, окологодовые, многолетние и др.

Совет

В основе лежат четко регистрируемые колебания какого-либо функционального показателя.

(Околонедневному биоритму соответствует уровень выделения с мочой некоторых физиологически активных веществ; сезонный биоритм –изменения продолжительности сна).

В человеческом организме ритмично все: работа внутренних органов, тканей, клеток, электрическая активность мозга, обмен веществ.

У человека выявлены и исследованы среди многих других четыре основных биологических ритма, а именно:

Полутора часовой ритм (от 90 до 100 минут) чередования нейрональной активности мозга как во время бодрствования, так и во время сна, являющийся причиной полуторачасовых колебаний умственной работоспособности и полуторачасовых циклов биоэлектрической активности мозга во время сна. Через каждые полтора часа человек испытывает попеременно то низкую, то повышенную возбудимость, то умиротворенность, то беспокойство;

Суточный ритм (24 часа) влияет на состояние человека и выражается в цикле бодрствование — сон;

Месячный ритм. Месячной цикличности подчинены определенные изменения в организме женщины. Недавно установлен околомесячный ритм работоспособности и настроения мужчин;

Годовой ритм. Отмечаются циклические изменения организма ежегодно во время смены времен года. Установлено, что в разное время года различно содержание гемоглобина и холестерина в крови; мышечная возбудимость выше весной и летом и слабее осенью и зимой, максимальная светочувствительность глаза тоже наблюдается весной и ранним летом, а к осени и зиме падает.

Кроме ритмов, приведенных выше, жизнь человека подчиняется социальным ритмам. К ним люди приучаются постоянно. Один из них — недельный. Дробя в течение многих веков каждый месяц на недели — шесть рабочих дней, один день для отдыха, человек сам приучил себя к нему. В недельном цикле меняется прежде всего работоспособность.

Причем одинаковая закономерность прослеживается у групп населения, различающихся по возрасту и характеру труда: у рабочих и инженеров на промышленных предприятиях, у школьников и студентов.

Понедельник начинается с относительно низкой работоспособности, от вторника к четвергу — самый гребень недели — она набирает максимальный подъем, а с пятницы опять падает.

Биологическое значение биоритмов – они выполняют в организме человека по крайней мере четыре основные функции.

Первая функция — оптимизация жизнедеятельности организма.Цикличность — базисное правило поведения биосистем, необходимое условие их функционирования. Это связано с тем, что биологические процессы не могут интенсивно протекать длительное время.

В биосистемах за всякой активностью должно следовать ее снижение для отдыха и восстановления.

Обратите внимание

Поэтому принцип ритмической смены активности, при которой происходит расход энергетических и пластических ресурсов, и ее торможения, предназначенного для восстановления этих расходов, изначально заложен при возникновении (рождении) любой биологической системы, включая человека.

Вторая функция — отражение фактора времени. Биоритмы — биологическая форма преобразования шкалы объективного, астрономического времени в субъективное, биологическое время.

Целью его является соотнесение циклов жизненных процессов с циклами объективного времени, т.е.

осуществляются временная организация биологических процессов в организме и согласование их с периодами колебаний внешней среды, что обеспечивает адаптацию организма к окружающей среде и отражает единство живой и неживой природы.

Третья функция — регуляторная.Ритмование — это рабочий механизм создания функциональных систем в центральной нервной системе (ЦНС) и базисный принцип регуляции функций.

Ритмование разрядов мозга имеет принципиальное значение для преобладания главной в данный момент реакции среди прочих. Так создается доминанта, господствующая в данное время функциональная система ЦНС.

Она объединяет в едином ритме различные центры и определяет текущую последовательную их деятельность путем навязывания «своего» ритма. Так в структурах мозга создаются нервные программы, определяющие поведение.

Четвертая функция — интеграционная (объединительная). Биоритм — это рабочий механизм объединения всех уровней организации организма в единую суперсистему.

Интеграция реализуется по принципу иерархичности: высокочастотные ритмы низкого уровня организации подчиняются средне- и низкочастотным уровням более высокого уровня организации.

Иначе говоря, высокочастотные биоритмы клеток, тканей, органов и систем организма подчиняются базовому среднечастотному суточному ритму. Это объединение осуществляется по принципу кратности.

Источник: https://megaobuchalka.ru/5/31838.html

Ритмы головного мозга | Мультирезонанс

самые быстрые. Их частота варьируется, в классическом варианте, от 14 до 42Гц (а по некоторым современным источникам, — более чем 100 Герц). В обычном бодрствующем состоянии, когда мы с открытыми глазами наблюдаем мир вокруг себя, или сосредоточены на решении каких-то текущих проблем, эти волны, преимущественно в диапазоне от 14 до 40 Герц, доминируют в нашем мозге.

Бета-волны обычно связаны с бодрствованием, пробужденностью,
сосредоточенностью, познанием и, в случае их избытка, — с беспокойством, страхом и паникой. Недостаток бета-волн связан с депрессией, плохим избирательным вниманием и проблемами с запоминанием информации.

Ряд исследователей обнаружили, что некоторые люди имеют очень высокий уровень напряжения, включая высокую мощность электрической активности мозга в диапазоне быстрых бета волн, и очень низкую мощность волн релаксации в альфа и тета диапазоне. Люди такого типа так же часто демонстрируют характерное поведение, как курение, переедание, азартные игры, наркотическую или алкогольную зависимость.

Это обычно успешные люди, потому что гораздо более чувствительны к внешним стимулам и реагируют на них значительно быстрее, чем остальные. Но для них ординарные события могут показаться крайне стрессовыми, заставляя искать способы понижения уровня напряжения и тревоги через прием алкоголя и наркотиков.

Важно

Повышенный уровень напряжения — это одна из разновидностей нарушения баланса нейрорегуляторов в организме. Очевидно, что у таких людей соответствующая стимуляция мозга может значительно понизить уровень бета активности и, соответственно, повысить релаксирующие альфа и тета ритмы.

Например, HenryAdams, Ph.D. — основатель «Национального института ментального здоровья» (NationalInstituteofMentalHealth) и ведущий специалист исследовательских программ по алкоголизму в госпитале святой Элизабеты (St.

Elizabeth’sHospital, Washington, D.C.

) установил, что самые «горькие» пьяницы только после одной сессии альфа-тета релаксации, сопровождаемой короткими антиалкогольными внушениями, в течение последующих двух недель понизили уровень употребления алкоголя на 55%.

В интервью корреспонденту доктор Adams заявил: «… это очень эффективная методика вместе с тем проста в подготовке и применении, свободна от существенного риска, какой-либо опасности и побочных медицинских эффектов. Теперь уже доказано, что она значительно уменьшает проявления абстинентного синдрома, обеспечивает состояние глубокой релаксации и тем самым уменьшает желание принимать наркотики…».

Альфаволны

возникают, когда мы закрываем глаза и начинаем пассивно расслабляться, не думая ни о чем. Биоэлектрические колебания в мозге при этом замедляются, и появляются «всплески» альфа-волн, т. е. колебаний в диапазоне от 8 до 13 Герц.

Если мы продолжим расслабление без фокусировки своих мыслей, альфа-
волны начнут доминировать во всем мозге, и мы погрузимся в состояние приятной умиротворенности, именуемым еще «альфа-состоянием».

Исследования показали, что стимуляция мозга в альфа-диапазоне идеально подходит для усвоения новой информации, данных, фактов, любого материала, который должен быть всегда наготове в вашей памяти.

В восточных боевых единоборствах есть такое понятие как «состояние мастера». Исследования методом ЭЭГ показали, что в этом состоянии в мозге человека преобладают альфа волны. На фоне альфа активности мозга скорость мышечной реакции в десять раз выше, чем в обычном состоянии.

Читайте также:  Аффективные расстройства (биполярное, маниакальное, депрессивное): симптомы, лечение

На электроэнцефалограмме (ЭЭГ) здорового, не находящегося под влиянием стресса человека, альфа-волн всегда много.

Недостаток их может быть признаком стресса, неспособности к полноценному отдыху и эффективному обучению, а так же свидетельством о нарушениях в деятельности мозга или болезни.

Именно в альфа-состоянии человеческий мозг продуцирует больше вета-эндорфинов и энкефалинов — собственных «наркотиков», отвечающих за радость, отдых и уменьшение боли. Также альфа волны являются своеобразным мостиком — обеспечивают связь сознания с подсознанием.

Совет

Многочисленными исследованиями методом ЭЭГ установлено, что люди, пережившие в детстве события, связанные с сильными душевными травмами, имеют подавленную альфа активность мозга.

Аналогичную картину электрической деятельности мозга можно наблюдать и у людей, страдающих посттравматическим синдромом, полученным в результате военных действий или экологических катастроф.

Поскольку в альфа-диапазоне лежит сенсорно-моторный ритм, то становится понятным — почему у людей, страдающих посттравматическим синдромом, затруднен произвольный доступ к чувственно-образным представлениям (на которых, кстати, строится вся традиционная безлекарственная психотерапия).

Пристрастие некоторых людей к алкоголю и наркотикам объясняется тем, что эти люди не способны генерировать достаточное количество альфа-волн в обычном состоянии, в то время как в состоянии наркотического или алкогольного опьянения, мощность электрической активности мозга, в альфа-диапазоне, у них резко возрастает.

Тетаволны

появляются, когда спокойное, умиротворенное бодрствование переходит в
сонливость. Колебания в мозге становятся более медленными и ритмичными, в диапазоне от 4 до 8 Герц.

Это состояние называют еще «сумеречным», поскольку в нем человек находится между сном и бодрствованием.

Часто оно сопровождается видением неожиданных, сноподобных образов, сопровождаемых яркими воспоминаниями, особенно детскими.

Тета-состояние открывает доступ к содержимому бессознательной части ума, свободным ассоциациям, неожиданным озарениям, творческим идеям.

С другой стороны, тета-диапазон (4-7 колебаний в секунду) идеален для некритического принятия внешних установок, поскольку его ритмы уменьшают действие соответствующих защитных психических механизмов и дают возможность трансформирующей информации проникнуть глубоко в подсознание.

То есть чтобы сообщения, призванные изменить ваше поведение или отношение к окружающим, проникли в подсознание, не подвергаясь критической оценке, свойственной бодрствующему состоянию, лучше всего наложить их на ритмы тета-диапазона.

Этому психофизиологическому состоянию (похожему на гипнотические состояния картиной распределения и сочетания электрических потенциалов головного мозга) в 1848 Френчмен Маури дал название гипнагогическое (от греческого hipnos = сон и agnogeus = проводник, ведущий).

Обратите внимание

В каждой Восточной философско-эзотерической школе «гипнагогия» использовалась веками для творчества и самосовершенствования, были тщательно разработаны психотехники и ритуалы для достижения этого состояния и существуют подробные классификации психофизиологических феноменов, ему сопутствующих.

Заметим, что применение гипнагогии не ограничивается Восточными религиями.

История донесла до нас, что такие известные личности, как Аристотель, Брамс, Пуччини, Вагнер, Франциск Гойа, Ницше, Эдгар Алан По, Чарлз Диккенс, Сальвадор Дали, Генри Форд, Томас Эдисон и Альберт Эйнштейн намеренно использовали гипнагогию для своего творчества, используя технику, которую описал еще Аристотель.

Используя тета-стимуляцию мозга всего за три недели можно научиться достигать творческих состояний в любое время и в любом месте — по желанию.

Например, Эдисон трудился над своими изобретениями в очень напряженном режиме.

Когда же в своих размышлениях он заходил в тупик, то садился в свое любимое кресло, брал металлический шар в руку (которую свободно опускал вдоль кресла) и засыпал.

Заснув, он непроизвольно выпускал шар из руки и грохот падающего на пол шара будил его, и очень часто он просыпался со свежими идеями относительно проекта, над которым работал.

Дельта-волны

начинают доминировать, когда мы погружаемся в сон. Они еще медленнее,
чем тета-волны, поскольку имеют частоту менее 4 колебаний в секунду.

Большинство из нас при доминировании в мозге дельта-волн находятся либо в сонном, либо в каком-то другом бессознательном состоянии.

Тем не менее, появляется все больше данных о том, что некоторые люди могут находиться в дельта-состоянии, не теряя осознанности.

Как правило, это ассоциируется с глубокими трансовыми или «нефизическими» состояниями. Примечательно, что именно в этом состоянии наш мозг выделяет наибольшие количества гормона роста, а в организме наиболее интенсивно идут процессы самовосстановления и самоисцеления.

Недавними исследованиями установлено, что, как только человек проявляет действительную заинтересованность чем-либо, то мощность биоэлектрической активности мозга в дельта-диапазоне значительно возрастает (наряду с бета-активностью).

Современные методы компьютерного анализа электрической активности мозга позволили установить, что в состоянии бодрствования в мозге присутствуют частоты абсолютно всех диапазонов, причем, чем эффективней работа мозга, тем большая когерентность (синхронность) колебаний наблюдается во всех диапазонах в симметричных зонах обоих полушарий мозга.

Источник: https://multiresonance.by/articles/ritmyi-golovnogo-mozga/

Мозговые ритмы

Более полувека назад немецкий психиатр Ганс Бергер, изучая электрическую активность головного мозга человека, впервые обнаружил слабые колебания с частотой около 10 в секунду и назвал их альфа-волнами.

Их размах, или амплитуда, составляет всего около 30 миллионных долей вольта.

Таким образом был открыт альфа-ритм, наиболее четкий образец всех упорядоченных проявлений — паттернов электрической активности мозга.

Заметим, что альфа-волны наблюдаются лишь у человека. Через 25 лет изучение этих еле заметных волн выросло в новый раздел науки, называемый электроэнцефалографией — ЭЭГ).

Добавим, что в 1968 г. американскому исследователю Д.

Важно

Коэну удалось зафиксировать вокруг головы человека (бесконтактным методом — в отличие от ЭЭГ) слабые колебания магнитных полей, возникающих одновременно с колебаниями электрических биопотенциалов мозга.

Он назвал полученную запись магнитоэнцефалогаммой (МЭГ). Колебания в магнитоэнцефалограмме по частоте совпадают с преобладающим ритмом электроэнцефалограммы — альфа-ритмом.

Грей Уолтер еще в 1953 г. предположил, что «чувствительность мозга к электрическим воздействиям могла бы обеспечить связь с некоторым началом, пронизывающим все вокруг нас»!. Уместно заметить, что длина волны электромагнитных колебаний с частотой альфа-ритма оказывается весьма близкой к длине окружности земного шара и естественным резонансам системы Земля-ионосфера…

Исследуя электромагнитные поля в сферическом слое, ограниченном поверхностью Земли и нижней ионосферой, В.О. Шуман в 1952 г. сначала теоретически предсказал, а затем экспериментально подтвердил существование естественных резонансов в полости Земля-ионосфера.

Предсказанные им резонансные частоты соответствуют так называемым «стоячим волнам» в тонком сферическом волноводе Земля-ионосфера, и длина волны для электромагнитных колебаний основного резонанса близка к длине окружности земного шара — вспомним оценку для альфа-ритма мозга человека.

В дневные часы Шуманом и Кёнигом были зарегистрированы одиночные «цуги» колебаний амплитудой до 100 мкВ/м с частотой заполнения 9 Гц, обычно длившиеся 0.3-3 сек, реже до 30 сек.

Для основной, самой интенсивной, спектральной линии возможны вариации резонансной частоты в пределах 7-11 Гц, но большей частью в течение суток разброс резонансных частот обычно лежит в пределах ±(0.1-0.2) Гц. Ширина полосы резонанса 2.5 Гц .

Наибольшей интенсивности резонансные колебания в полости Земля-ионосфера достигают днем. На частоте около 8 Гц спектральная плотность колебаний составляет 0.1 мВ/м Гц в магнитоспокойные дни и возрастает на 15% во время магнитных бурь.

Совет

Ночью резонансные свойства слабее выражены, так как возрастает утечка низкочастотных электромагнитных волн сквозь ионосферу, в это время пониженную электронную концентрацию.

Отношение послеполуденного максимума амплитуд к ночному минимуму составляет 5-10 раз.

По единодушному мнению большинства специалистов, причиной возбуждения электромагнитных колебаний на резонансных частотах, определяемых формой и размерами Земли, служат разряды атмосферного электричества — молнии, вызываемые всей совокупностью гроз на земном шаре (примерно 100 разрядов в секунду.

Давайте рассмотрим основные типы ритмов мозга :дельта-ритм (от 0.

5 до 4 колебаний в секунду, амплитуда — 50-500 мкВ);тэта-ритм (от 5 до 7 колебаний в секунду, амплитуда — 10-30 мкВ);альфа-ритм (от 8 до 13 колебаний в секунду, амплитуда — до 100 мкВ);сигма-ритм — «веретена» (от 13 до 14 колебаний в секунду);бета-ритм (от 15 до 35 колебаний в секунду, амплитуда — 5-30 мкВ);

гамма-ритм (от 35 до 100 колебаний в секунду, амплитуда — до 15 мкВ);

Колебания альфа-ритма и другие электромагнитные проявления мозговой деятельности отображают весьма сложные психо-физиологические процессы в живом мозгу. Имеющиеся статистические и экспериментальные данные определенно свидетельствуют в пользу того, что характер альфа-ритма является врожденным и, вероятно, наследственным.

Грей Уолтер и американский психолог Уоррен Мак-Каллок высказали достаточно обоснованную гипотезу о том, что альфа-ритм характеризует процесс внутреннего «сканирования» мысленных образов при сосредоточении внимания на какой-нибудь умственной проблеме. Наблюдается, например, любопытное совпадение между частотой альфа-волн и периодом инерции зрительного восприятия (примерно 0.1 секунды).

Когда мы закрываем глаза, наши альфа-ритмы усиливаются и приобретают характер длинных рядов синусоидальных колебаний. У большинства людей альфа-волны исчезают, когда они открывают глаза и перед ними возникает та или иная реальная картина. Это позволяет думать, утверждает Грей Уолтер, что альфа-ритм — это процесс сканирующих поисков паттерна, затухающий, когда паттерн найден.

Когда мы начинаем испытывать сонливость, на электроэнцефалограмме прежде всего наблюдается уменьшение интенсивности альфа-волн, свойственных состоянию бодрствования, и их постепенное замещение тэта-ритмами.

Обратите внимание

У спокойно спящего человека доминируют медленные дельта-волны, хотя во время сна могут возникать несколько периодов появления быстрых колебаний — веретенообразных групп волн сигма-ритма с частотой около 14 циклов в секунду — спящий видит сны.

Здесь следует отметить то обстоятельство, что у большинства людей время сна и ослабления альфа-ритмов соответствует ночному времени суток. Грей Уолтер считает, что сон — это наследие далекого прошлого, когда при наступлении ночи человек испытывал потребность устраниться от активной деятельности. А медленные ритмы, в частности — дельта-волны, являются как бы «охранителями» мозга.

Характер альфа-ритма сугубо индивидуален. Исследования, проведенные Греем Уолтером [10], показали, что у большинства людей, имеющих четко выраженный альфа-ритм, преобладает способность к абстрактному мышлению.

У незначительной группы испытуемых обнаруживается полное отсутствие альфа-ритмов даже при закрытых глазах.

Эти люди свободно мыслят зрительными образами, однако испытывают трудности в решении проблем абстрактного характера.

Другая особенность — ограничение скорости, наложенное частотой альфа-ритмов (варьирующей у разных людей от 8 до 13 циклов в секунду) на быстроту наших сенсорных и психических реакций. Более быстрый ритм, как утверждает Грей Уолтер, гарантирует большую оперативность решений и действий.

Итак, альфа-ритм безусловно связан с формами мышления, с природой образов, возникающих в мыслящем мозгу. Механизм, действие которого мы обнаруживаем в расчете, предвидении и воображении, мозг человека должен был приобрести на очень ранних этапах человеческой истории. Позднее возникли процессы абстрактного мышления и контроля — то, что мы называем волей.

Действие этих механизмов сознательного контроля может быть зарегистрировано в виде электрических и магнитных вихрей, проносящихся через мозг человека как мимолетные узоры-паттерны, в первую очередь — как колебания альфа-ритмов.

Важно

В мозгу других животных наиболее чувствительные приборы регистрируют лишь изолированные и нерегулярные элементы этих высших функций.

Таким образом, механизмы мозга обнаруживают глубокое различие между человеком и даже человекообразной обезьяной.

На близость основной резонансной частоты земного шара и альфа-ритма мозга человека в 1960 г. обратили внимание Кёниг и его сотрудники.

Они сопоставляли время реакции человека на оптический сигнал в периоды, когда увеличивалась напряженность поля основной частоты резонатора Земля-ионосфера (8 Гц), и в периоды, когда отмечались нерегулярные колебания в диапазоне частот 2-6 Гц.

Такие массовые исследования проводились ежедневно. Оказалось, что при увеличении напряженности поля основной частоты время реакции человека, составлявшее в среднем около 250 мс, достоверно уменьшается на 20 мс, а при наличии нерегулярных колебаний 2-6 Гц — увеличивается на 15 мс.

Позже эти исследования были проверены и воспроизведены в США в 1968-71 гг. Полученные результаты с полной определенностью подтверждают тесную взаимосвязь альфа-ритмов и шумановских резонансов.

Ночью, особенно между 2 и 4 часами, у бодрствующих людей отмечается замедленность в действиях, увеличивается число ошибок при решении арифметических задач. Но мы уже отмечали, что именно в ночные часы существенно уменьшается напряженность поля шумановских резонансов и что процессы абстрактного мышления, повидимому, связаны с альфа-ритмами мозга человека.

Источник: Ufolog.ru

Источник: https://nlo-mir.ru/chelovek/686-2010-07-28-10-12-42.html

Ссылка на основную публикацию
Adblock
detector