Проприорицепторы: анатомия, механизм работы, классификация

Медицина и Здоровье на портале EUROLAB | Медицинский справочник болезней и их лечение, консультации врача, клиники

Рецептор – сложное образование, состоящие из терминалей (нервных окончаний) и дендритов чувствительных нейронов, глии и специализированных клеток других тканей, которые в комплексе обеспечивают превращение влияния факторов внешней или внутренней среды (раздражение) в нервный импульс.

Эта внешняя информация может поступать на рецептор в форме света, попадающего на сетчатку; механической деформации кожи, барабанной перепонки или полукружных каналов; химических веществ, проникающих в органы обоняния или вкуса.

Большинство обычных сенсорных рецепторов (химических, температурных или механических) деполяризуется в ответ на стимул (такая же реакция, как и у обычных нейронов), деполяризация ведёт к высвобождению медиатора из аксонных окончаний.

Однако существуют исключения: при освещении колбочки потенциал на её мембране возрастает – мембрана гиперполяризуется: свет, повышая потенциал, уменьшает выделение медиатора.

По внутреннему строению рецепторы бывают как простейшими, состоящими из одной клетки, так и высокоорганизованными, состоящими из большого количества клеток, входящих в состав специализированного органа чувств.

Обратите внимание

Животные могут воспринимать информацию следующих типов: – свет (фоторецепторы); – химические вещества – вкус, запах, влажность (хеморецепторы); – механические деформации – звук, прикосновение, давление, сила тяжести (механорецепторы); – температура (терморецепторы); – электричество (электрорецепторы).

Сенсорная клетка посылает информацию по принципу «всё или ничего» (есть сигнал / нет сигнала). Для того, чтобы определить интенсивность стимула, рецепторный орган использует параллельно несколько клеток, у каждой из которых имеется свой порог чувствительности.

Существует и относительная чувствительность – на сколько процентов нужно изменить интенсивность сигнала, чтобы орган чувства зафиксировал изменение. Так, у человека относительная чувствительность яркости света примерно равна 1 %, силы звука – 10 %, силы тяжести – 3 %.

Эти закономерности были открыты Бугером и Вебером; они справедливы только для средней зоны интенсивности раздражителей.

Сенсорам также свойственна адаптация – они реагируют преимущественно на резкие изменения в окружающей среде, не «засоряя» нервную систему статической фоновой информацией. Ч

увствительность сенсорного органа можно значительно повысить посредством суммации, когда несколько расположенных рядом сенсорных клеток связаны с одним нейроном.

Слабый сигнал, попадающий в рецептор, не вызвал бы возбуждения нейронов, если бы они были связаны с каждой из сенсорных клеток в отдельности, но вызывает возбуждение нейрона, в котором суммируется информация от нескольких клеток сразу. С другой стороны, этот эффект понижает разрешающую способность органа.

Так, палочки в сетчатке глаза, в отличие от колбочек, обладают повышенной чувствительностью, так как один нейрон связан сразу с несколькими палочками, но зато имеют меньшую разрешающую способность.

Важно

Чувствительность к очень малым изменениям в некоторых рецепторах очень высока благодаря их спонтанной активности, когда нервные импульсы возникают даже в отсутствие сигнала. В противном случае слабые импульсы не смогли бы преодолеть порог чувствительности нейрона.

Порог чувствительности может изменяться благодаря импульсам, поступающим из центральной нервной системы (обычно по принципу обратной связи), что изменяет диапазон чувствительности рецептора. Наконец, важную роль в повышении чувствительности играет латеральное торможение.

Соседние сенсорные клетки, возбуждаясь, оказывают друг на друга тормозящее воздействие. Благодаря этому усиливается контраст между соседними участками. В зависимости от строения рецепторов их подразделяют на первичные, или первичночувствующие, которые являются специализированными окончаниями чувствительного нейрона, и вторичные, или вторичночувствующие, представляющие собой клетки эпителиального происхождения, способные к образованию рецепторного потенциала в ответ на действие адекватного стимула.

Первичночувствующие рецепторы могут сами генерировать потенциалы действия в ответ на раздражение адекватным стимулом, если величина их рецепторного потенциала достигнет пороговой величины.

К ним относятся обонятельные рецепторы, большинство механорецепторов кожи, терморецепторы, болевые рецепторы или ноцицепторы, проприоцепторы и большинство интерорецепторов внутренних органов.

Вторичночувствующие рецепторы отвечают на действие раздражителя лишь возникновением рецепторного потенциала, от величины которого зависит количество выделяемого этими клетками медиатора.

С его помощью вторичные рецепторы действуют на нервные окончания чувствительных нейронов, генерирующих потенциалы действия в зависимости от количества медиатора, выделившегося из вторичночувствующих рецепторов. Вторичные рецепторы представлены вкусовыми, слуховыми и вестибулярными рецепторами, а также хемочувствительными клетками синокаротидного клубочка.

Фоторецепторы сетчатки, имеющие общее происхождение с нервными клетками, чаще относят к первичным рецепторам, но отсутствие у них способности генерировать потенциалы действия указывает на их сходство с вторичными рецепторами.

В зависимости от источника адекватных стимулов рецепторы подразделяют на наружные и внутренние, или экстерорецепторы и интерорецепторы; первые стимулируются при действии раздражителей внешней среды (электромагнитные и звуковые волны, давление, действие пахучих молекул), а вторые – внутренней (к этому типу рецепторов относят не только висцерорецепторы внутренних органов, но также проприоцепторы и вестибулярные рецепторы). В зависимости от того, действует стимул на расстоянии или непосредственно на рецепторы, их подразделяют еще на дистантные и контактные.

Рецепторы кожи

  • Болевые рецепторы.
  • Тельца Пачини – капсулированные рецепторы давления в округлой многослойной капсуле. Располагаются в подкожно-жировой клетчатке. Являются быстроадаптирующимися (реагируют только в момент начала воздействия), то есть регистрируют силу давления. Обладают большими рецептивными полями, то есть представляют грубую чувствительность.
  • Тельца Мейснера – рецепторы давления, расположенные в дерме. Представляют собой слоистую структуру с нервным окончанием, проходящим между слоями. Являются быстроадаптирующимися. Обладают малыми рецептивными полями, то есть представляют тонкую чувствительность.
  • Тельца Меркеля – некапсулированные рецепторы давления. Являются медленноадаптирующимися (реагируют на всей продолжительности воздействия), то есть регистрируют продолжительность давления. Обладают малыми рецептивными полями.
  • Рецепторы волосяных луковиц – реагируют на отклонение волоса.
  • Окончания Руффини – рецепторы растяжения. Являются медленноадаптирующимися, обладают большими рецептивными полями.

Рецепторы мышц и сухожилий

  • Мышечные веретена – рецепторы растяжения мышц, бывают двух типов: o с ядерной сумкой o с ядерной цепочкой
  • Сухожильный орган Гольджи – рецепторы сокращения мышц. При сокращении мышцы сухожилие растягивается и его волокна пережимают рецепторное окончание, активируя его.

Рецепторы связок В основном представляют собой свободные нервные окончания (Типы 1, 3 и 4), меньшая группа – инкапсулированные (Тип 2). Тип 1 аналогичен окончаниям Руффини, Тип 2 – тельцам Паччини.

Рецепторы сетчатки глаза Сетчатка содержит палочковые (палочки) и колбочковые (колбочки) фоточувствительные клетки, которые содержат светочувствительные пигменты. Палочки чувствительны к очень слабому свету, это длинные и тонкие клетки, сориентированные по оси прохождения света. Все палочки содержат один и тот же светочувствительный пигмент.

Колбочки требуют намного более яркого освещения, это короткие конусообразные клетки, у человека колбочки делятся на три вида, каждый из которых содержит свой светочувствительный пигмент – это и есть основа цветового зрения.

Под воздействием света в рецепторах происходит выцветание – молекула зрительного пигмента поглощает фотон и превращается в другое соединение, хуже поглощающее свет волн (этой длины волны).

Практически у всех животных (от насекомых до человека) этот пигмент состоит из белка, к которому присоединена небольшая молекула, близкая к витамину A. Эта молекула и представляет собой химически трансформируемую светом часть.

Совет

Белковая часть выцвевшей молекулы зрительного пигмента активирует молекулы трансдуцина, каждая из которых деактивирует сотни молекул циклического гуанозинмонофосфата, участвующих в открытии пор мембраны для ионов натрия, в результате чего поток ионов прекращается – мембрана гиперполяризуется. Чувствительность палочек такова, что адаптировавшийся к полной темноте человек способен увидеть вспышку света такую слабую, что ни один рецептор не может получить больше одного фотона. При этом палочки не способны реагировать на изменения освещённости когда свет настолько ярок, что все натриевые поры уже закрыты.

Источник: https://www.eurolab.ua/anatomy/246

Рецепторы, классификация, механизм возбуждения

Рецепторы – это воспринимающие раздражители нервные окончания, или специализированные клетки, или специализированные органы. Рецепторы отличаются разнообразием. Им присущи следующие свойства: высокая возбудимость (чувствительность), высокая приспосабливаемость (адаптация), кодирование информации, специфичность и др.

Тип рецептора:

–      Ампула Лоренцин,

–      Хеморецептор,

–      Гигрорецептор,

–      Механорецептор,

–      Барорецептор,

–      Проприоцептор,

–      Осморецептор,

–      Фоторецептор,

–      Терморецептор,

–      Ноцицептор,

–      Магнитные рецепторы.

Гигрорецепторы служат для определения влажности, что имеет особое значение для наземных членистоногих. Эти органы чувств обычно ассоциированы с терморецепторными клетками, поэтому комплексный орган чувств получил название термогигрорецепторный орган.

Магнитные рецепторы именно они помогают мышке найти свою нору, кошке – вернуться в старую квартиру, а птицам – не сбиться с пути. И человеку эти рецепторы достались по наследству от животных.

Существуют несколько классификаций рецепторов:

По положению

Экстерорецепторы (экстероцепторы) – расположены на поверхности или вблизи поверхности тела и воспринимают внешние стимулы (сигналы из окружающей среды).

Интерорецепторы (интероцепторы) – расположены во внутренних органах и воспринимают внутренние стимулы (например, информацию о состоянии внутренней среды организма).

Проприорецепторы (проприоцепторы) – рецепторы опорно-двигательного аппарата, позволяющие определить, например, напряжение и степень растяжения мышц и сухожилий. Являются разновидностью интерорецепторов.

По способности воспринимать разные стимулы

Мономодальные – реагирующие только на один тип раздражителей (например, фоторецепторы – на свет).

Полимодальные – реагирующие на несколько типов раздражителей (например, многие болевые рецепторы, а также некоторые рецепторы беспозвоночных, реагирующие одновременно на механические и химические стимулы).

По адекватному раздражителю

Хеморецепторы – воспринимают воздействие растворенных или летучих химических веществ.

Обратите внимание

Осморецепторы – воспринимают изменения осмотической концентрации жидкости (как правило, внутренней среды).

Механорецепторы – воспринимают механические стимулы (прикосновение, давление, растяжение, колебания воды или воздуха и т. п.)

Фоторецепторы – воспринимают видимый и ультрафиолетовый свет.

Терморецепторы – воспринимают понижение (холодовые) или повышение (тепловые) температуры.

Болевые рецепторы, стимуляция которых приводит к возникновению боли. Такого физического стимула, как боль, не существует, поэтому выделение их в отдельную группу по природе раздражителя в некоторой степени условно.

В действительности, они представляют собой высокопороговые сенсоры различных (химических, термических или механических) повреждающих факторов.

Однако уникальная особенность ноцицепторов, которая не позволяет отнести их, например, к «высокопороговым терморецепторам», состоит в том, что многие из них полимодальны: одно и то же нервное окончание способно возбуждаться в ответ на несколько различных повреждающих стимулов.

Читайте также:  Фобия боязнь одиночества: как называется страх одиночества, название фобии

Электрорецепторы – воспринимают изменения электрического поля.

Магнитные рецепторы – воспринимают изменения магнитного поля.

У человека имеются первые шесть типов рецепторов. На хеморецепции основаны вкус и обоняние, на механорецепции – осязание, слух и равновесие, а также ощущения положения тела в пространстве, на фоторецепции – зрение. Терморецепторы есть в коже и некоторых внутренних органах.

Большая часть интерорецепторов запускает непроизвольные, и в большинстве случаев неосознаваемые, вегетативные рефлексы.

Важно

Так, осморецепторы включены в регуляцию деятельности почек, хеморецепторы, воспринимающие pH, концентрации углекислого газа и кислорода в крови, включены в регуляцию дыхания и т.д.

Иногда предлагается выделять группу электромагнитных рецепторов, в которую включают фото-, электро- и магниторецепторы. Магниторецепторы точно не идентифицированы ни у одной группы животных, хотя предположительно ими служат некоторые клетки сетчатки птиц, а возможно, и ряд других клеток

Механизм возбуждения рецепторов. Под действием возбуждения на рецепторную клетку изменяется пространственная конфигурация белковых рецепторных молекул, встроенных в мембраны. Это приводит к изменению проницаемости мембраны для ионов натрия и возникновению ионного тока, генерирующего рецепторный потенциал.

Во вторично чувствующих рецепторах рецепторный потенциал вызывает выделение квантов медиатора из пресинаптического окончания рецепторной клетки. Медиатор, воздействуя на постсинаптическую мембрану рецепторного нейрона, вызывает ее деполяризацию – постсинаптический потенциал.

Рецепторный потенциал, его механизм формирования

Рецепторный потенциал. При действии раздражителя на рецепторные образования органов чувств в них возникает целая цепь биофизических и биохимических превращений, под влиянием которых возникает рецепторный потенциал.

Он представляет собой сдвиг в величине мембранного потенциала, проявляющийся в деполяризации. Рецепторный потенциал сохраняется в течение всего времени раздражения, градуален, т. е.

нарастает вместе с увеличением интенсивности раздражения, обладает способностью к суммации, не распространяется, затухая на некотором расстоянии от места своего возникновения. Когда рецепторный потенциал достигает определенной величины, на его фоне возникает распространяющийся ПД.

Рецепторный и распространяющийся потенциалы возникают в первичных рецепторах в одних и тех же элементах.

Совет

Так, в расположенных в коже окончаниях отростка сенсорного нейрона при действии раздражителя сначала формируется рецепторный потенциал, под влиянием которого в ближайшем перехвате Ранвье возникает распространяющийся потенциал. Следовательно, в первичных рецепторах рецепторный потенциал является причиной возникновения – генерации – распространяющегося ПД, поэтому его называют еще генераторным.



Источник: http://biofile.ru/bio/21080.html

Классификация и механизмы возбуждения рецепторов

Рецептораминазываются специальные образования, восприни­мающие и преобразующие энергию внешнего раздражения в специфи­ческую энергию нервного импульса.

Все рецепторы разделяют на экстерорецепторы,принимающие раз­дражения из внешней среды (рецепторы органов слуха, зрения, обоняния, вкуса, осязания), интерорецепторы, реагирующие на раздражения из внутренних органов, и проприорецепторы, воспринимающие раздраже­ния из двигательного аппарата (мышц, сухожилий, суставных сумок).

В зависимости от природы раздражителя, на который они настрое­ны, различают хеморецепторы(рецепторы вкуса и обоняния, хеморецепторы сосудов и внутренних органов), механорецепторы (проприорецепторы двигательной сенсорной системы, барорецепторы сосудов, рецепторы слуховой, вестибулярной, тактильной и болевой сенсорных систем), фоторецепторы (рецепторы зрительной сенсорной системы) и терморецепторы (рецепторы сенсорной системы кожи и внутренних органов).

По характеру связи с раздражителем различают дистантные рецепторы, реагирующие на сигналы от удаленных источников и обусловливающие предупредительные реакции организма (зрительные и слуховые), и контактные, принимающие непосредственные воздействия (тактильные и др.).

По структурным особенностям различают первичные (первично-чувствующие) и вторичные (вторичночувствующие) рецепторы.

Первичные рецепторы – это окончания чувствительных биполярных клеток, тело которых находится вне ЦНС, один отросток подходит к воспринимающей раздражение поверхности, а другой направляется в ЦНС (например, проприорецепторы, тактильные и обонятельные рецепторы).

Вторичные рецепторы представлены специализированными рецепторными клетками, которые расположены между чувствительным нейроном и точкой приложения раздражителя. К ним относят рецепторы вкуса, зрения, слуха, вестибулярного аппарата.

В практическом отношении наиболее важное значение имеет психофизиологическая классификация рецепторов по характеру ощущений, возникающих при их раздражении.

Согласно этой классификации у человека различают зрительные, слуховые, обонятельные, вкусовые, осязательные рецепторы, терморецепторы, рецепторы положения тела и его частей в пространстве (проприо- и вестибу-лорецепторы) и рецепторы кожи.

Механизм возбуждения рецепторов.В первичных рецепторах энергия внешнего раздражителя непосредственно преобразуется в нервный импульс в самом чувствительном нейроне.

Обратите внимание

В периферическом окончании чувствительных нейронов при действии раздражителя происходит изменение проницаемости мембраны для определенных ионов и ее деполяризация, возникает местное возбуждение – рецепторный потенциал,который, достигнув пороговой величины, обусловливает появление потенциала действия, распространяемого по нервному волокну к нервным центрам.

Во вторичных рецепторах раздражитель вызывает появление рецепторного потенциала в клетке-рецепторе. Ее возбуждение приводит к выделению медиатора в пресинаптической части контакта клетки-рецептора с волокном чувствительного нейрона.

Местное возбуждение этого волокна отражается появлением возбуждающего постсинаптического потенциала (ВПСП), или так называемого генераторного потенциала.

При достижении порога возбудимости в волокне чувствительного нейрона возникает потенциал действия, несущий информацию в ЦНС.

Таким образом, во вторичных рецепторах одна клетка преобразует энергию внешнего раздражителя в рецепторный потенциал, а другая – в генераторный потенциал и потенциал действия. Постсинаптический потенциал первого чувствительного нейрона называют генераторным потенциалом и он приводит к генерации нервных импульсов.

4.Свойства рецепторов

1. Главным свойством рецепторов является их избирательная чувствительность к адекватным раздражителям, к восприятию которых они эволюционно приспособлены (свет для фоторецепторов, звук для рецепторов улитки внутреннего уха и т.п.).

Большинство рецепторов настроено на восприятие одного вида (модальности) раздражителя – света, звука и т.п. К таким специфическим для них раздражителям чувствительность рецепторов чрезвычайно высока.

Возбудимость рецептора измеряется минимальной величиной энергии адекватного раздражителя, которая необходима для возникновения возбуждения, т.е. порогом возбуждения.

2. Другим свойством рецепторов является очень низкая величина порогов для адекватных раздражителей.

Например, в зрительной сенсорной системе фоторецепторы способны возбуждаться одиночным квантом света в видимой части спектра, обонятельные рецепторы – при действии одиночных молекул пахучих веществ и т.п.

Важно

Возбуждение рецепторов может возникать и при действии неадекватных раздражителей (например, ощущение света в зрительной сенсорной системе при механических и электрических раздражениях). Однако в этом случае пороги возбуждения оказываются значительно более высокими.

Различают абсолютные и разностные (дифференциальные)пороги.Абсолютные пороги измеряются минимально ощущаемой величиной раздражителя.

Дифференциальные пороги представляют собой минимальную разницу между двумя интенсивностями раздражителя, которая еще воспринимается организмом (различия в цветовых оттенках, яркости света, степени напряжения мышц, суставных углах и пр.).

3. Фундаментальным свойством всего живого является адаптация,т.е. приспособляемость к условиям внешней среды. Адаптационные процессы , охватывают не только рецепторы, но и все звенья сенсорных
систем.

Адаптация заключается в приспособлении всех звеньев сенсорной системы к длительно действующему раздражителю, а проявляется она в снижении абсолютной чувствительности сенсорной системы.

Субъективно адаптация проявляется в привыкании к действию постоянного раздражителя: войдя в прокуренное помещение, человек через несколько минут перестает ощущать запах дыма; человек не ощущает постоянного давления своей одежды на кожу, не замечает непрерывного тиканья часов и т.д.

По скорости адаптации к длительным раздражениям рецепторы подразделяют на быстро и медленно адаптирующиеся.

Первые после развития адаптационного процесса практически не сообщают следующему за ними нейрону о длящемся раздражении, у вторых эта информация передается, хотя и в значительно уменьшенном виде (например, так называемые вторичные окончания в мышечных веретенах, которые информируют ЦНС о статических напряжениях).

Адаптация может сопровождаться как понижением, так и повышением возбудимости рецепторов.

Совет

Так, при переходе из светлого помещения в темное происходит постепенное повышение возбудимости фоторецепторов глаза, и человек начинает различать слабо освещенные предметы – это так называемая темновая адаптация.

Однако такая высокая возбудимость рецепторов оказывается чрезмерной при переходе в ярко освещенное помещение («свет режет глаза»). В этих условиях возбудимость фоторецепторов быстро снижается – происходит световая адаптация.

Для оптимального восприятия внешних сигналов нервная система тонко регулирует чувствительность рецепторов в зависимости от потребностей момента путем эфферентной регуляции рецепторов.

В частности, при переходе от состояния покоя к мышечной работе чувствительность рецепторов двигательного аппарата заметно возрастает, что облегчает восприятие информации о состоянии опорнодвигательного аппарата (гаммарегуляция).

Механизмы адаптации к различной интенсивности раздражителя могут затрагивать не только сами рецепторы, но и другие образования в органах чувств. Например, при адаптации к различной интенсивности звука происходит изменение подвижности слуховых косточек (молоточка, наковальни и стремячка) в среднем ухе человека.

5.Кодирование информации

Амплитуда и длительность отдельных нервных импульсов (потенциалов действия), поступающих от рецепторов к центрам, при разных Раздражениях остаются постоянными.

Однако рецепторы передают в нервные центры адекватную информацию не только о характере, но и о силе дейст­вующего раздражителя.

Информация об изменениях интенсивности раз­дражителя кодируется (преобразуется в форму нервного импульсного ко­да) двумя способами:

изменением частоты импульсов,идущих по каждому из нерв­ных волокон от рецепторов к нервным центрам;

изменением числа и распределения импульсов– их количества в пачке (порции), интервалов между пачками, продолжительно­сти отдельных пачек импульсов, числа одновременно возбужден­ных рецепторов и соответствующих нервных волокон (разнооб­разная пространственно-временная картина этой импульсации, богатая информацией, называется паттерном).

Чем больше интенсивность раздражителя, тем больше частота афферентных нервных импульсов и их количество.

Это обусловливает­ся тем, что нарастание силы раздражителя приводит к увеличению деполя­ризации мембраны рецептора, что, в свою очередь, вызывает увеличение амплитуды генераторного потенциала и повышение частоты возникающих в нервном волокне импульсов. Между силой раздражения и числом нерв­ных импульсов существует прямо пропорциональная зависимость.

Имеется еще одна возможность кодирования сенсорной информа­ции. Избирательная чувствительность рецепторов к адекватным раз­дражителям уже позволяет отделить различные виды действующей на организм энергии.

Обратите внимание

Однако и в пределах одной сенсорной системы может быть различная чувствительность отдельных рецепторов к разным по характеристикам раздражителям одной и той же модальности (разли­чение вкусовых характеристик разными вкусовыми рецепторами языка, цветоразличение различными фоторецепторами глаза и др.).

Читайте также:  Стертая (легкая) дизартрия у детей: лечение и коррекция, прогноз



Источник: https://infopedia.su/9xb60.html

Проприоцепция

Проприоцепцией называется совокупность способ­ностей человека ориентироваться в положении своих конечностей по их отношению друг к другу, воспринимать собственные движе­ния и оценивать сопротивление совершаемым движениям. Источни­ком эффективных стимулов во всех этих случаях является само тело, в мышцах, сухожилиях и суставах которого преимущественно расположены соответствующие  рецепторы  —  проприоцепторы.

Проприоцепция, как модальность, обладает тремя качествами.

  • Во-первых, ощущение положения конечностей, базирующееся на информации об углах в каждом суставе. Так, человек может судить об относительном положении конечностей. Поскольку ощущение положения конечностей хорошо сохраняется, например, после долгого сна, оно лишь в незначительной степени подвержено адапта­ции.
  • Во-вторых, проприоцепция обеспечивает ощущение движения. В этом случае проприоцепторы воспринимают и направление, и скорость движения при изменениях суставного угла даже без зри­тельного контроля (например, сгибание и разгибание руки в локте). Порог восприятия движения зависит от величины и скорости изменения угла. Для проксимальных суставов (например, плече­вых) — он ниже, чем для дистальных (например, межфаланговых суставов пальцев).
  • Третьим качеством проприоцепции является ощущение усилия. Проприоцепторы способны оценивать величину мышечного усилия, необходимого для совершения определенного движения, а также для сохранения некоторого положения сустава при действии того или иного сопротивления движению.

Проприоцепторы находятся в подкожных структурах —

  • мышцах,
  • сухожилиях и
  • суставных сумках.

В мышцах — это мышечные ве­ретена, а в сухожилиях — сухожильные органы Гольджи. Они уча­ствуют в восприятии положения и движения тела и конечностей. В суставных сумках это рецепторы типа окончаний Руффини, сухо­жильных органов Гольджи и, в меньшем числе, рецепторы типа телец Пачини.

Эти рецепторы связаны с миелинизированными нерв­ными волокнами. Кроме того, в суставных сумках имеются свобод­ные нервные окончания с немиелинизированными афферентами.

Суставные   механорецепторы  при изменениях  положения  сустава  и соответствующих сжатиях или растягиваниях суставной сумки, пере­дают информацию о положении суставов, направлении и скорости движения конечностей тела.

Фазнотонические свойства суставных рецепторов проявляются не только тогда, когда сустав движется так, что обусловливает возрастание активности рецептора, но и тогда, когда движение осуществляется в обратном направлении. Работу рецепторов  положения  суставов  объясняет рис. 16.3.

Рис.16.3. Функция рецепторов положения суставов. На А — реакция неполностью адаптирующегося рецептора коленного сустава сгибанием (I) и разгибанием (2). Сплошные линии — быстрое сгибание и разгибание,  Штриховые и пунктирные линии — более медленное.

На Б — области ответа или «рецептивные углы» нескольких суставных рецепторов при их постоянном возбуждении в результате длительного расположения сустава под разными углами.

Общее представление об относительном положении суставов фор­мируется у человека в результате процесса интеграции информации от рецепторов различных мышц, сухожилий и суставов. Этот про­цесс начинается, как и в других сенсорных системах, на уровне подкорковых ядер.

В центральной интеграции, кроме того, используются и сигналы несенсорного происхождения.

Речь идет, в частности, об эфферент­ных «копиях приказов мышцам», которые центральные отделы мо­торной системы адресуют в центральную нервную систему для вза­имодействия с сенсорными сигналами, поступающими от проприоцепторов.

Эти эфферентные «копии» содержат информацию о планируемой активности мышц и о том движении, которое последует. Подобные сведения важны для выделения из афферентной инфор­мации о движении той афферентации, которая связана с запрограм­мированной  мышечной активностью.

Источник: https://doctor-v.ru/med/proprioception/

Классификация рецепторов

Сенсорные системы

Высокоспециализированные рецепторные образования нервной системы, воспринимающие раздражения из внешней среды, от органов тела относятся к органам рецепции. Рецепторы преобразуют энергию раздражений в специфическую форму нервного возбуждения.

Совокупность нейронов, участвующих в восприятии раздражения, проведении возбуждения до коры головного мозга, её сенсорные клетки составляют единую систему – «анализатор» (И.П. Павлов), иначе «сенсорную систему».

Сенсорная системавключает три отдела:

1) рецепторный – периферический, воспринимающий определённую форму физической и химической энергии и транспортирующий её в нервный процесс;

2) проводниковый – нервное возбуждение достигает промежуточных центров мозгового ствола, где устанавливается связь с различными эффекторными путями;

3) центральный – корковый (участки коры больших полушарий мозга, где нервное возбуждение качественно изменяется, воспринимается как ощущение).

Основные функции сенсорной системы:

1) восприятие и обработка информации (физической и химической энергии);

2) трансформация энергии в нервные импульсы;

3) передача нервных импульсов в мозг через цепи нейронов;

4) осуществление обратных связей.

Классификация рецепторов.

1. По характеру взаимодействия раздражителей.

а) Экстерорецепторы (внешние рецепторы) – воспринимают раздражение при действии предметов и явлений внешнего мира. К ним относятся: слуховые, зрительные, обонятельные, вкусовые, тактильные раздражители.

Важно

б) Интерорецепторы (внутренние рецепторы) – воспринимают раздражения от внутренних органов (висцерорецепторы), от положения тела и движения тела и отдельных его частей в пространстве (вестибулорецепторы и проприорецепторы).

2. В зависимости от физической природы раздражителей.

а) Фоторецепторы – рецепторы зрительной сенсорной системы.

б) Механорецепторы – рецепторы скелетно-мышечной системы, слуховой, вестибулярной, тактильной систем, барорецепторы сердечно-сосудистой системы.

в) Терморецепторы – рецепторы кожи и внутренних органов.

г) Хеморецепторы – рецепторы обонятельной и вкусовой сенсорных систем, рецепторы сосудистые и тканевые.

д) Болевые – рецепторы болевой сенсорной системы.

3. В зависимости от контакта с раздражителем.

а) Дистантные рецепторы – воспринимающие раздражение на удалённом расстоянии от организма (зрительные, слуховые, обонятельные).

б) Контактные рецепторы – когда раздражитель вступает с ними в непосредственный контакт (вкусовые, тактильные).

4. По структурным особенностям и принципу преобразования энергии раздражения.

а) Первичночувствующие – тела чувствительных биполярных нейронов, находящихся на периферии; один отросток – дендрит – подходит к воспринимающей раздражение поверхности, другой (центральный) – аксон – передаёт возбуждение в центр.

Энергия раздражителя трансформируется в нервный импульс в одной и той же клетке.

Возникает рецепторный потенциал, обуславливающий появление потенциала действия (ПД), достигающий по нервному волокну центров обоняния, тактильной и проприоцептивной чувствительности.

Совет

б) Вторичночувствующие – рецепторы, у которых между окончаниями сенсорного нейрона и точкой приложения раздражителя имеется рецептирующая (специализированная) клетка ненервного происхождения.

Возникающее в ней возбуждение по существу является рецепторным потенциалом. Выделяется медиатор, который передаётся через синапс на сенсорный нейрон и вызывает генераторный потенциал.

Сенсорный нейрон возбуждается раздражителем опосредовано (вторично), благодаря воздействию рецептирующих клеток (рецепторы зрения, слуха, вкуса).

Дата добавления: 2016-06-15; просмотров: 3750; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник: https://poznayka.org/s14866t1.html

Проприорецепторы скелетных мышц и их роль в обеспечении двигательной активности. Реципрокная иннервация мышц -антагонистов. Гамма-эфферентный контроль

Необходимым условием нормальной мышечной деятельности является получение информации о положении тела в пространстве и о степени сокращения каждой из мышц. Эта информация поступает в центральную нервную систему от рецепторов вестибулярного аппарата, глаз, кожи, а также от проприорецепторов (мышечно-суставных рецепторов). К проприорецепторам относятся:

мышечные веретена, находящиеся среди мышечных волокон,

тельца Гольджи, расположенные в сухожилиях,

пачиниевы тельца, находящиеся в фасциях, покрывающих мышцы, в сухожилиях, связках и периосте.

Все эти проприорецепторы относятся к группе механорецепторов. Мышечные веретена и тельца Гольджи возбуждаются при растяжении, а пачиниевы тельца — при давлении.

Тонус скелетных мышц. В покое, вне работы, мышцы в организме не являются полностью расслабленными, а сохраняют некоторое напряжение, называемое тонусом. Внешним выражением тонуса является определенная упругость мышц.

Электрофизиологические исследования показывают, что тонус связан с поступлением к мышце редких нервных импульсов, возбуждающих попеременно различные мышечные волокна.

Эти импульсы возникают в мотонейронах спинного мозга, активность которых, в свою очередь поддерживается импульсами, исходящими из как из вышестоящих центров, так и из проприорецепторов (мышечных веретен и др.), находящихся в самих мышцах.

О рефлекторной природе тонуса скелетных мышц свидетельствует тот факт, что перерезка задних корешков, по которым чувствительные импульсы от мышечных веретен поступают в спинной мозг, приводит к полному расслаблению мышцы.

Миотатические рефлексы — рефлексы на растяжение мышцы. Быстрое растяжение мышцы, всего на несколько миллиметров ме­ханическим ударом по ее сухожилию приводит к сокращению всей мышцы и двигательной реакции.

Обратите внимание

Например, легкий удар по сухо­жилию надколенной чашечки вызывает сокращение мышц бедра и разгибание голени.

Дуга этого рефлекса следующая: мышечные рецепторы четырехглавой мышцы бедра à спинальный ганглий à задние корешки à задние рога III поясничного сегмента à мотонейроны передних рогов того же сегмента à экстрафузальные во­локна четырехглавой мышцы бедра.

Реализация этого рефлекса была бы невозможна, если бы одновременно с сокращением мышц-разгибателей не расслаблялись мышцы-сгибатели. Рефлекс на рас­тяжение свойствен всем мышцам, но у мышц-разгибателей, они хорошо выражены и легко вызываютс

Реципрокная иннервация(от лат. reciprocus — возвращающийся, обратный, взаимный Сущность Реципрокная иннервация заключается в том, что рефлекторное возбуждение в группе нервных клеток, иннервирующих определённые мышцы, сопровождается реципрокным, т. е.

сопряжённым, торможением активности в других клетках, функционально связанных с антагонистами, что ведёт к их расслаблению. Т. о., центры мышц-антагонистов — сгибателей и разгибателей — находятся в противоположном состоянии при выполнении многих двигательных актов.

Механизм Реципрокная иннервация обеспечивает возможность осуществления организмом координированных движений (ходьба, чесание, движения глаз, трудовые движения и многие др.). Реципрокная иннервация была впервые обнаружена в 1876 П. А. Спиро, учеником И. М. Сеченова, и детально проанализирована английским физиологом Ч.

Шеррингтоном, который и ввёл этот термин. Как показали Н. Е. Введенский и А. А. Ухтомский, этот механизм не жестко фиксирован, а динамичен, вследствие чего мышцы, являющиеся антагонистами при совершении одних движений, при участии в других сокращаются одновременно, т. е. ведут себя как синергисты.

Прямое исследование процессов возбуждения и торможения в одиночных нервных клетках, проводящееся с помощью микроэлектродной техники с 50-х гг. 20 в., позволило понять особенности механизма Реципрокная иннервация на клеточном уровне.

Ведущую роль в формировании сопряжённых отношений между двигательными нейронами, иннервирующими мышцы-антагонисты, играют вставочные нейроны, выполняющие в нервной системе функцию релейных переключателей и интегрирующих элементов.

Гамма-эфферентного механизма состоит в приспособлении сокращения мышечных волокон в веретене к данному состоянию скелетной мышцы. Импульсация гамма-эфферентных волокон, как правило, снижает порог возбуждения аннулоспиральных рецепторов.

Важно

Этот механизм играет важную роль в поддержании определенного положения тела.
Гамма-эфферентный механизм составляет часть саморегулирующейся системы.

Читайте также:  Препараты лития в психиатрии и неврологии (литий карбонат, оксибутират, сульфат и другие): показания, инструкция, предостережения

Когда тело или какая-либо часть его принимает определенное положение, растяжению соответствующих мыши предшествует приход гамма-эфферентной импульсации, регулирующей частоту импульсов, порождаемых аннуло-спиральными рецепторами.

Затем центрально управляемые моторные нервы вызывают сокращение соответствующих мышц, причем активность этих нервов контролируется рефлек-торно гамма-эфферентами. Таким образом, эта система включает один афферентный и два эфферентных пути (ее называют также гамма-петлей).

Источник: https://cyberpedia.su/6x8dbf.html

Что такое проприорецепторы

Так малыш изучает окружающий его мир

Проприорецепторы – анатомический термин, который составлен из двух латинских слов. Его можно перевести так: «воспринимающий себя».

Согласитесь, что даже находясь в абсолютной темноте, мы четко можем определить положение частей нашего тела: голова наверху, ноги внизу и т.п. Проприорецепция это и есть  ощущение положения частей нашего тела, для чего не обязательно на них смотреть.

Например, сделайте прямо сейчас за своей спиной фигуру из трех пальцев. Я думаю, вы ее ни с чем не спутаете.

Существуют заболевания ЦНС, при которых человек теряет эту способность, что катастрофически сказывается на возможности передвигаться и выполнять какую-либо работу.

Данные рецепторы устроены очень сложно. Они располагаются в области сухожилий, которые одним концом прикрепляются к мышцам, а другим – к костям. Тончайшие мышечные волоконца окружают спиралью нервные нити. Все это заключено в отдельную капсулу, внешне похожую на веретено. Подобные  образования так и называются «сухожильные веретена».

Когда скелетная мышца сокращается, она стимулирует такое же сокращение мышечных волокон внутри веретена.

Раздражение передается на их нервные нити, приводя к появлению нервного импульса, тут же отсылаемого в ЦНС: сначала в центры спинного мозга, а затем при необходимости осмысливать сокращения мышц – в головной мозг.

Так формируются двигательные навыки и у младенца, и у спортсменов или музыкантов, у всех людей.  Даже при работе с клавиатурой компьютера новичку сначала нужно искать нужную клавишу, и только с опытом пальцы начинают сами « порхать» над клавиатурой, и даже не глядя, нажимать нужную кнопку.

Совет

Зачем я это рассказываю? А вот зачем. Каждый взрослый человек знает, что движения необходимы для здоровья.

Когда я готовила для преподавания в университете раздел анатомии о ЦНС, то меня поразила одна картинка, на которой большой палец руки, расположенный в проекции двигательной извилины головного мозга, занимал львиную долю этой части мозга. Даже у языка данная территория значительно меньше.

Основная масса нервных импульсов поступает в мозг именно от большого пальца, так как без его участия мы не можем делать ничего!

Это значит, что основное количество сигналов, заставляющих работать данную область нашего головного мозга, мы получаем от рецепторов, расположенных на пальцах.

Вспомните поведение младенца, всегда стремящегося схватить любой предмет в свои маленькие ладошки, а затем направить его в рот.

Так тактильные (чувство прикосновения), проприо- и вкусовые рецепторы помогают маленькому человеку получать первые сведения об окружающем мире.

Подобные проприорецепторы расположены вдоль всех сухожилий. Их возбуждение, появляющееся лишь при сокращении определенной группы мышц, заставляет «думать», т.е. работать, соответствующие центры спинного и головного мозга. Хорошо известно, что любой работающий орган развивается, а не работающий атрофируется.

Проприорецепторы развивают мозг

Именно поэтому огромное значение для развития мозга детей имеет моторика их пальчиков. Вы обращали внимание, что все малыши любят возиться с пластилином, рисовать или строить из конструктора фантастические сооружения. Родителям следует  всячески поддерживать и развивать подобные навыки.

Обратите внимание

Ну, а кто-то из взрослых уже людей находит спасение от стресса, лишь взяв в руки вязальные спицы или иглу для вышивания.

Почему? Нервные импульсы от бесчисленных проприорецепторов кистей рук, попадая в соответствующие центры головного мозга, возбуждают их клетки, отбирая часть энергии от стрессового очага возбуждения.

Обратите внимание, как лениво «ворочаются» мысли, если мы мало двигаемся, а больше лежим или сидим. Но стоит лишь всего  5 минут (!) активно подвигаться, жизнь сразу меняет свою окраску.

Читатель скажет, что при движениях стимулируется кровообращение и в клетки поступает больше питания и кислорода, но дело не только в этом, а, как вы поняли, и в активации центров проприрецепции в ЦНС.

Активный образ жизни делает человека более способным к обучению во всех сферах.

Вывод: двигайтесь в любом доступном для вас ритме и видах движений каждую свободную минуту, что также тренирует и ваш мозг. Это можете сделать лишь вы сами, так как известно, что “у бога нет других рук, кроме ваших”.

Источник: https://nina555.ru/proprioretseptoryi/

Рецепторы и их классификация. Закономерности деятельности рецепторных образований

Рецептором называют специализированную клетку, эволюционно приспособленную к восприятию из внешней или внутренней среды определенного раздражителя и к преобразованию его энергии из физической или химической формы в форму нервного возбуждения.

Рецепторы человека

КЛАССИФИКАЦИЯ РЕЦЕПТОРОВ

Классификация рецепторов основывается, в первую очередь, на характере ощущений, возникающих у человека при их раздражении.

Различают зрительные, слуховые, обонятельные, вкусовые, осязательные рецепторы, терморецепторы, проприои вестибулорецепторы (рецепторы положения тела и его частей в пространстве).

Обсуждается вопрос существования специальных рецепторов боли.

Рецепторы по месту расположения разделяют на внешние, или экстерорецепторы, и внутренние, или интерорецепторы.

К экстерорецепторам относятся слуховые, зрительные, обонятельные, вкусовые и осязательные рецепторы.

Важно

К интерорецепторам относятся вестибулорецепторы и проприорецепторы (рецепторы опорно-двигательного аппарата), а также интерорецепторы, сигнализирующие о состоянии внутренних органов.

По характеру контакта с внешней средой рецепторы делятся на дистантные, получающие информацию на расстоянии от источника раздражения (зрительные, слуховые и обонятельные), и контактные – возбуждающиеся при непосредственном соприкосновении с раздражителем (вкусовые и тактильные).

В зависимости от природы вида воспри­нимаемого раздражителя, на который они оптимально настроены, различают пять типов рецепто­ров.

Рецепторы в зависимости от природы вида воспринимаемого раздражителя

  • Механорецепторы возбуждаются при их механической дефор­мации; расположены в коже, сосудах, внутренних органах, опор­но-двигательном аппарате, слуховой и вестибулярной системах.
  • Хеморецепторы воспринимают химические изменения внеш­ней и внутренней среды организма. К ним относятся вкусовые и обонятельные рецепторы, а также рецепторы, реагирующие на изменение состава крови, лимфы, межклеточной и цереброспинальной жидкости (изменение напряжения О2 и СО2, осмолярности и рН, уровня глюкозы и других веществ). Такие рецепторы есть в слизистой оболочке языка и носа, каротидном и аортальном тельцах, гипоталамусе и продолговатом мозге.
  • Терморецепторы реагируют на изменения температуры. Они подразделяются на тепловые и холодовые рецепторы и находятся в коже, слизистых оболочках, сосудах, внутренних органах, ги­поталамусе, среднем, продолговатом и спинном мозге.
  • Фоторецепторы в сетчатке глаза воспринимают световую (электромагнитную) энергию.
  • Ноцицепторы, возбуждение которых сопровождается болевы­ми ощущениями (болевые рецепторы). Раздражителями этих рецепторов являются механические, термические и химические (ги-стамин, брадикинин, К+, Н+ и др.) факторы. Болевые стимулы воспринимаются свободными нервными окончаниями, которые имеются в коже, мышцах, внутренних органах, дентине, сосудах. С психофизиологической точки зрения рецепто­ры подразделяют в соответствии с органами чувств и формируе­мыми ощущениями на зрительные, слуховые, вкусовые, обонятельные и тактильные.

В зависимости от строения рецепторов их подразделяют на первичные, или первичночувствующие, которые являются специализированными окончаниями чувствительного нейрона, и вторичные, или вторичночувствующие, представляющие собой клетки эпителиального происхождения, способные к образованию рецепторного потенциала в ответ на действие адекватного стимула.

Первичночувствующие рецепторы могут сами генерировать потенциалы действия в ответ на раздражение адекватным стимулом, если величина их рецепторного потенциала достигнет пороговой величины.

К ним относятся обонятельные рецепторы, большинство механорецепторов кожи, терморецепторы, болевые рецепторы или ноцицепторы, проприоцепторы и большинство интерорецепторов внутренних органов. Тело нейрона расположено в спинно-мозговом ганглии или в ганглии черепных нервов.

В первичном ре­цепторе раздражитель действует непосредственно на окончания сенсорного нейрона. Первичные рецепторы являются филогене­тически более древними структурами, к ним относятся обоня­тельные, тактильные, температурные, болевые рецепторы и про­приорецепторы.

Вторичночувствующие рецепторы отвечают на действие раздражителя лишь возникновением рецепторного потенциала, от величины которого зависит количество выделяемого этими клетками медиатора.

С его помощью вторичные рецепторы действуют на нервные окончания чувствительных нейронов, генерирующих потенциалы действия в зависимости от количества медиатора, выделившегося из вторичночувствующих рецепторов. Во вторичных рецепторах имеется специальная клетка, синаптически связанная с окончанием дендрита сенсорного нейрона.

Это клетка, например фоторецептор, эпителиальной природы или нейроэктодермального происхождения. Вторичные рецепторы представлены вкусовыми, слуховыми и вестибулярными рецепторами, а также хемочувствительными клетками синокаротидного клубочка.

Фоторецепторы сетчатки, имеющие общее происхождение с нервными клетками, чаще относят к первичным рецепторам, но отсутствие у них способности генерировать потенциалы действия указывает на их сходство с вторичными рецепторами.

По скорости адаптации рецепторы делят на три груп­пы: быстро адаптирующиеся (фазные), медленно адаптирующиеся (тонические) и смешанные (фазнотонические), адаптирующиеся со средней скоростью.

Совет

Примером быстро адаптирующихся рецеп­торов являются рецепторы вибрации (тельца Пачини) и прикос­новения (тельца Мейснера) к коже. К медленно адаптирующимся рецепторам относятся проприорецепторы, рецепторы растяжения легких, болевые рецепторы.

Со средней скоростью адаптируются фоторецепторы сетчатки, терморецепторы кожи.

Большинство рецепторов возбуждаются в ответ на действие стимулов только одной физической природы и поэтому относятся к мономодальным.

Их можно возбудить и некоторыми неадекватными раздражителями, например фоторецепторы — сильным давлением на глазное яблоко, а вкусовые рецепторы — прикосновением языка к контактам гальванической батареи, но получить качественно различаемые ощущения в таких случаях невозможно.

Наряду с мономодальными существуют полимодальные рецепторы, адекватными стимулами которых могут служить раздражители разной природы. К такому типу рецепторов принадлежат некоторые болевые рецепторы, или ноцицепторы (лат.

nocens — вредный), которые можно возбудить механическими, термическими и химическими стимулами.

Полимодальность имеется у терморецепторов, реагирующих на повышение концентрации калия во внеклеточном пространстве так же, как на повышение температуры.

Источник: https://www.braintools.ru/article/9580

Ссылка на основную публикацию
Adblock
detector