Нейрон: формирование, строение, описание процесса передачи информации

Нейрон и его регуляторная роль. Способы передачи информации от нейрона

Нейрон- нервная клетка, основная функциональная и структурная единица нервной системы; принимает сигналы, поступающие от рецепторов. Нейрон перерабатывает их и в форме нервных импульсов передаёт к эффекторным нервным окончаниям, контролирующим деятельность исполнительных органов.

Для восприятия информации развились ветвящиеся отростки — дендриты, обладающие избирательной чувствительностью к определённым сигналам.

Процессы местного возбуждения и торможения с рецепторной мембраны, суммируясь, воздействуют на триггерную (пусковую) область — наиболее возбудимый участок поверхностной мембраны нейрона, служащий местом возникновения распространяющихся биоэлектрических потенциалов. Для их передачи служит длинный отросток — аксон.

Обратите внимание

Достигнув концевых участков аксона, импульс нервный возбуждает секреторную мембрану, вследствие чего из нервных окончаний секретируется физиологически активное вещество — медиатор или нейрогормон.

Сложность и многообразие функций нервной системы определяются взаимодействием между нейронами, которое, в свою очередь, представляют собой набор различных сигналов, передаваемых в рамках взаимодействия нейронов с другими нейронами или мышцами и железами. Сигналы испускаются и распространяются с помощью ионов, генерирующих электрический заряд, который движется вдоль нейрона.

Передача информации в мозг при восприятии звука, прикосновения, запаха или зрительного образа требует последовательного вовлечения нейрона за нейроном, так же как и при выполнении простого произвольного движения.Информация от клетки к клетке передается через синапсы.

Анализатор– совокупность центральных и периферических образований, воспринимающих и анализирующих изменения окружающей среды и внутренней среды организма. Периферический отдел анализатора представлен рецепторами .

Рецепторы улавливают изменения показателей текущего состояния, а затем проводят первичный анализ информации: сравнивают полученные значения с генетически запрограммированными. Полученная информация через проводниковое звено анализатора посредством нервной, гормональной, метаболической систем регуляции передается в центры головного мозга отвечающие за сознание.

Информация анализируется, после чего вырабатывается управляющий сигнал, поступающий посредством нервных, гормональных, метаболических механизмов к эффекторам. Эффекторы под влиянием управляющего воздействия корригируют параметры текущего состояния, подстраивая их до нормальных значений, что фиксируется рецепторами.

В ответ на раздражение в рецепторах кодируется качественная характеристика раздражителя, сила, время и локализация его действия, а также месторасположение источника воздействия в окружающем пространстве. В проводниковом отделе анализатора при передаче сигнала от одного нейрона к другому происходит смена информационного кода.

Таким образом, информация о внешнем стимуле многократно кодируется и перекодируется, пока сигнал возбуждения не достигнет центрального отдела анализатора. Отметим, что смысловое значение передаваемого сигнала обычно остается прежним, и лишь при определенных негативных обстоятельствах содержание информации может искажаться.

Для каждого раздражителя эволюция нашла свой оптимальный способ передачи информации. Для многих нервных волокон была установлена логарифмическая зависимость между интенсивностью раздражителя и частотой вызываемых им вынужденных колебаний. В процессе передачи информации могут принимать участие одновременно множество рецепторов и нервных волокон . Ансамбль нейронов – это группа нейронов, имеющая общий для них раздражитель. Д. Хебб высказал предположение, что информация передается исключительно через возбуждение группы нейронов, он предложил рассматривать ансамбль нейронов в качестве основного способа кодирования и передачи информации. Такой способ передачи информации вполне надежен, так как не зависит от состояния одного нейрона. Нейроны – специализированные клетки, способные принимать, обрабатывать, кодировать, передавать и хранить информацию, организовывать реакции на раздражения, устанавливать контакты с другими нейронами, клетками органов. Уникальными особенностями нейрона являются способность генерировать электрические разряды и передавать информацию.

Способы: 1. Синаптическая передача 2.ИЭА

Важно

Действие медиатора на постсинаптическую мембрану заключается в повышении ее проницаемости для ионов натрия Возникновение потока ионов Иа+ из синаптической щели через постсинаптическую мембрану ведет к ее деполяризации и вызывает генерацию возбуждающего постсинаптического потенциала (ВПСП).

Считается, что переносчиком инф-ции яв-ся ПД, однако это не так (ПД один, инф-я различна, работает по з-ну все или ничего, скоросьт невысокая 30-120млс, не обладает св-вом быстродействия, не объясняет явление биорадиосвязи).

Все это объясняет ИЭА-колебания м-ны нейронов (2,5мв-амплитуда, когда ПД 120 мв). Частоты от 0,3 до 70 имп/сек.(часто реагирует на состояние орг-мя: 10-12имп/с-норма, до 4-адаптация). Может распространяться на расстояния от мкм до км. Энергетика не завист от митохондр.акт-ти.

Высок скорость. ИЭА возникает благодаря О2 и АФК- обеспечивают возн-ние ИЭзарядов, создают электрон-возбужденное состояние(ЭВС). При переходе О2 до ОН (одноэлектронный путь вос-ния О2 образуется 8 эВ(160ккал-16м-л АТФ). АФК вызывают открытие-закрытие м-н.

Низк конц-я АФК-ад-ция, высок-патология. ЭВС сопровождаются акустическими импульсами.

35. Главные направления эволюции филогенетических групп-арогенез и аллогенез.

Изучен особенностей развит отдельных стволов филогенетич древа показывает существован 2 главных направлений эволюции: 1)аллогенез – развитее группы внутри одной адаптивной зоны с возникновен близких форм, различающ-ся адаптациями одного масштаба; 2)арогенез – развитие группы с существ расширением адаптивной зоны и с выходом в др природн зоны.

При выделении аллогенеза как типа развития группы принципиален не его масштаб, а хар-р развития дочерних филогенетич групп; в случае аллогенеза они различаются адаптациями одного и того же уровня, определяющ специализац в данной адаптивной зоне или ее части. Такие адаптации наз идиоадаптацией или алломорфозом.

Аллогенез связан с специализацией каждой из филогенетич форм к каким-то определенным условиям внутри адаптивной зоны. Специализация – это крайний вариант аллогенеза, связан с приспособлен группы к очень узким условиям существован (сужение адаптивной зоны). Крупные, принципиальн адаптации, приводящие группу на путь арогенеза, наз ароморфозом.

Прогресс – это лучшее, а не простое новое. К прогрессивн изменениям относятся возникновен полового процесса, многоклеточность, дифференциация нервной сис-мы, фотосинтез. Относительность – главная хар-ка прогрессивн изменений. Энгельс указывал, что «основн закон всякого прогресса в его относительности».

Совет

Успех конкретного вида в борьбе за сущест-ние чаще всего выражается увеличением численности особей в популяциях, числа популяций, расширением ареала вида. Эти особенности и харак-ют биологич прогресс. Билогич прогресс достигается как усложнением, так и упрощением организации.

Читайте также:  Магнелис в6: отзывы при неврозе, как принимать при всд и неврозе

Северцов показал конкретные пути достижения биологич прогресса посредством таких морфофизиологич изменений как ароморфоз, идиадаптация, общая дегенерация. Увеличен численности вида нельзя рассматривать как абсолютный критерий биологич прогресса. Увеличен числа особей любых видов должно иметь какую-то величину, ограничен хотя бы пространством Земли. Важным критерием биологич прогресса оказывается число дочерних форм, образовавшихся из родоначальных групп. Биологич прогресс отражает успех групп в борьбе за сущест-ние. Успех м/т достигаться упрощением и усложнением организации.



Источник: https://infopedia.su/9x2d64.html

Передача информации в нервной системе

Обратимся к примерам. Чувствительный нейрон, воспринимающий температуру (Терморецепторы), находится в состоянии покоя, пока температура объекта, с которым контактирует человек, не достигнет важного для организма уровня (его называют пороговым).

Когда в заключение чувствительного нейрона действует пороговый раздражитель, нервная клетка реагирует на него. Она преобразует энергию раздражителя на электрическую энергию — кодирует его действие, используя язык нервных импульсов.

Как это происходит?

На багаж знаний читайте похожие рефераты по теме:

Нейрон

Генерирует импульс сам нейрон. Концентрации положительно и отрицательно заряженных ионов (натрия, калия, органических веществ и т.п.) вне нейроном и внутри него неодинаковы.

Итак, в состоянии покоя его плазматическая мембрана извне имеет положительный заряд, а изнутри — отрицательный. Во время действия порогового раздражителя проницаемость мембраны для ионов резко меняется.

По тысячные доли секунды заряды на мембране меняют знак на противоположный, а затем возвращаются в исходное состояние. Так в месте поступления сигнала возникает электрический импульс.

Появившись в одной точке мембраны, импульс вызывает перераспределение зарядов на соседней ее участке — в ней также возникает электрический импульс. Таким образом импульс перемещается в окончание аксона. Скорость распространения импульса по нейронам колеблется от 0,5 до 120 м / с.

Перефирическая нервная система

Как передается информация от нейрона к нейрону и к клеткам-мишеням? В синапсе — месте контакта нейронов — между участками мембраны аксона того нейрона, передающего импульс, и мембраны нейрона, который его получает, расположена щель. Преодолеть эту щель электрический импульс не может.

Чтобы передать информацию нейрона-адресату, нейро-служб перекодирует ее на язык химических сигналов. Окончание его аксона содержат пузырьки с венами-медиаторами. Каждый импульс, достигая окончания аксона, вызывает выброс определенного количества медиатора.

Через синаптическую щель медиатор попадает на мембрану нейрона-адресата, где расположены белки-рецепторы. Медиатор связывается с ними, и информация поступает к нейрону-адресата. Таким образом передается информация и от нейрона к клетке-мишени.

Обратите внимание

Ответ клетки-мишени или нейрона зависит от вида медиатора и рецептора, с которым медиатор связывается. Так, при передаче нервного импульса на скелетное мышечное волокно нейрон выбрасывает медиатор ацетилхолин.

Он взаимодействует с рецептором на мембране мышечного волокна, и на ней возникает электрический импульс — говорят, что клетка возбуждается. Вследствие возбуждения мышечное волокно сокращается.

В зависимости от того, какой эффект в клетке-мишени вызывает взаимодействие рецептора с определенным медиатором, рецепторы разделяют на возбуждающие или тормозные. Тормозные и возбуждающие рецепторы есть и на мембранах нейронов. Итак, возбуждаться и тормозиться могут и нейроны. Во время возбуждения нейрон генерирует электрический импульс, а при торможении формирования импульса блокируется.

Пептиды

На мембране нейрона расположено множество синапсов, в которых постоянно поступают различные медиаторы — одни действуют на тормозные рецепторы, другие — на возбуждающие.

Ответ нейрона на эти противоположные влияния зависит от того, какие из сигналов преобладают — возбуждающие или тормозные. Если преобладают возбуждающие, нейрон возбуждается и передает информацию другим нейронам или клеткам-мишеням.

Если же преобладают тормозные — нейрон тормозится, передача информации приостанавливается.

Принцип рефлекса и рефлекторная дуга. Основой любого рефлекса является цепь нейронов — рефлекторная дуга. Простая рефлекторная дуга состоит из двух нейронов — чувствительного и эффекторного, между которыми существует синаптическая связь.

С помощью такой дуги реализуется, например, коленный рефлекс — разгибание ноги в коленном суставе в ответ на легкий удар чуть ниже коленную чашечку.

Важно

Нервные окончания дендритов чувствительного нейрона, расположенных в мышце-разгибатели, фиксируют его растяжения, вызванное ударом молоточка.

Нервная система

Чувствительный нейрон возбуждается, передает возбуждение на эффекторный нейрон, аксон которого заканчивается в том же мышце, разгибает ногу в коленном суставе. Эффекторный нейрон, в свою очередь, возбуждает мышечные волокна, мышца сокращается, и нога в колене разгибается.

Рефлекторная дуга, которая обеспечивает рефлекс ЧСС вследствие действия внезапного звука, значительно сложнее.

Связь между чувствительным нейроном, по которому поступает сигнал от органа слуха, и эффекторными нейроном, доставляет команду к сердцу, опосредованный несколькими интернейронами.

Оба эти рефлексы являются врожденными. Связи между нейронами, образуют соответствующие рефлекторные дуги, наследственно запрограммированы.

Кроме врожденных рефлексов, у человека существует множество приобретенных рефлексов.

А это означает, что огромное количество связей между нейронами, которые объединяют их в рефлекторные дуги, формируется в течение всей жизни и является следствием опыта, который приобретает человек.

Источник: http://bagazhznaniy.ru/obrazovanie/peredacha-informacii-v-nervnoj-sisteme

Строение нейрона с обозначениями

Микроструктура нервной ткани

Нервная система состоит в основном из нервной ткани. Нервная ткань состоит из нейронов и нейроглии.

Нейрон (нейроцит) – структурно-функциональная единица нервной системы (рис.2.1, 2.2). По приблизительным расчетам, в нервной системе человека насчитывается около 100 млрд. нейронов.

Рис. 2.1. Нейрон. Импрегнация нитратом серебра

Читайте также:  Нервный стресс: симптомы и лечение, восстановление нервной системы, последствия

1 — тело нервной клетки; 2 – аксон; 3 — дендриты

Рис.2.2. Схема строения нейрона(по Ф. Блум и др., 1988)

Внешнее строение нейрона

Особенностью внешнего строения нейрона является наличие центральной части — тела (soma) и отростков. Отростки нейрона бывают двух видов – аксон и дендриты.

Аксон(от греч. axis – ось) – может быть только один. Это эфферентный, то есть отводящий (от лат. efferens — выносить) отросток: он проводит импульсы от тела нейрона к периферии.

Аксон на своем протяжении не разветвляется, но от него под прямым углом могут отходить тонкие коллатерали. Место отхождения аксона от тела нейрона называется аксонным холмиком.

Совет

На конце аксон разделяется на несколько пресинаптических окончаний (терминалей), каждое из которых заканчивается утолщением – пресинаптической бляшкой, участвующей в образовании синапса.

Дендриты(от греч. dendron— «дерево») — дихотомически ветвящиеся отростки, которых может быть у нейрона от 1 до 10-13. Это афферентные, то есть приносящие (от лат. аfferens — приносить) отростки.

На мембране дендритов имеются выросты – дендритные шипики. Это места синаптических контактов.

Шипиковый аппарат у человека активно формируется до 5-7-летнего возраста, когда происходят наиболее интенсивные процессы накопления информации.

В нервной системе высших животных и человека нейроны очень многообразны по форме, размерам и функциям.

Классификация нейронов:

— по количеству отростков: псевдоуниполярные, биполярные, мультиполярные (рис.2.3.);

— теме по форме тела: пирамидные, грушевидные, звездчатые, корзинчатые и др. (рис.2.4; 2.5);

— по функции: афферентные (чувствительные, проводят нервные импульсы от органов и тканей в мозг, тела лежат вне ЦНС в чувствительных узлах), ассоциативные (передают возбуждение с афферентных на эфферентные нейроны), эфферентные (двигательные или вегетативные, проводят возбуждение к рабочим органам, тела лежат в ЦНС или вегетативных ганглиях).

Рис.2.3. Виды нейронов с разным количеством отростков

1 — униполярный; 2 — псевдоуниполярный;

3 — биполярный; 4 — мультиполярный

А Б В

Рис. 2.4. Нейроны различной формыА – пирамидные нейроны коры больших полушарий; Б – грушевидные нейроны коры мозжечка; В – мотонейроны спинного мозга

Рис.2.5. Нейроны различной формы(по Дубровинской Н.В.и др., 2000)

Дата добавления: 2016-09-06; просмотров: 746;

Источник: https://ekoshka.ru/stroenie-nejrona-s-oboznachenijami/

Нейрон. Строение нервной клетки

Нейрон (от др.-греч. νεῦρον — волокно, нерв) — это структурно-функциональная единица нервной системы. Эта клетка имеет сложное строение, высоко специализирована и по структуре содержит ядро, тело клетки и отростки. В организме человека насчитывается более ста миллиардов нейронов.

Обзор

Сложность и многообразие функций нервной системы определяются взаимодействием между нейронами, которое, в свою очередь, представляют собой набор различных сигналов, передаваемых в рамках взаимодействия нейронов с другими нейронами или мышцами и железами. Сигналы испускаются и распространяются с помощью ионов, генерирующих электрический заряд, который движется вдоль нейрона.

Строение

Тело клетки

Тело нервной клетки состоит из протоплазмы (цитоплазмы и ядра), снаружи ограничена мембраной из двойного слоя липидов(билипидный слой).

Липиды состоят из гидрофильных головок и гидрофобных хвостов, расположены гидрофобными хвостами друг к другу, образуя гидрофобный слой, который пропускает только жирорастворимые вещества (напр. кислород и углекислый газ).

На мембране находятся белки: на поверхности (в форме глобул), на которых можно наблюдать наросты полисахаридов (гликокаликс), благодаря которым клетка воспринимает внешнее раздражение, и интегральные белки, пронизывающие мембрану насквозь, в которых находятся ионные каналы.

Типичная структура нейрона

Нейрон состоит из тела диаметром от 3 до 130 мкм, содержащего ядро (с большим количеством ядерных пор) и органеллы (в том числе сильно развитый шероховатый ЭПР с активными рибосомами, аппарат Гольджи), а также из отростков. Выделяют два вида отростков: дендриты и аксоны.

Нейрон имеет развитый и сложный цитоскелет, проникающий в его отростки. Цитоскелет поддерживает форму клетки, его нити служат «рельсами» для транспорта органелл и упакованных в мембранные пузырьки веществ (например, нейромедиаторов).

Цитоскелет нейрона состоит из фибрилл разного диаметра: Микротрубочки (Д = 20-30 нм) — состоят из белка тубулина и тянутся от нейрона по аксону, вплоть до нервных окончаний. Нейрофиламенты (Д = 10 нм) — вместе с микротрубочками обеспечивают внутриклеточный транспорт веществ.

Обратите внимание

Микрофиламенты (Д = 5 нм) — состоят из белков актина и миозина, особенно выражены в растущих нервных отростках и в нейроглии. В теле нейрона выявляется развитый синтетический аппарат, гранулярная ЭПС нейрона окрашивается базофильно и известна под названием «тигроид».

Тигроид проникает в начальные отделы дендритов, но располагается на заметном расстоянии от начала аксона, что служит гистологическим признаком аксона.

Различается антероградный (от тела) и ретроградный (к телу) аксонный транспорт.

Дендриты и аксон

Аксон — обычно длинный отросток, приспособленный для проведения возбуждения от тела нейрона.

 Дендриты — как правило, короткие и сильно разветвлённые отростки, служащие главным местом образования влияющих на нейрон возбуждающих и тормозных синапсов (разные нейроны имеют различное соотношение длины аксона и дендритов).

Нейрон может иметь несколько дендритов и обычно только один аксон. Один нейрон может иметь связи со многими (до 20-и тысяч) другими нейронами.

Дендриты делятся дихотомически, аксоны же дают коллатерали. В узлах ветвления обычно сосредоточены митохондрии.

Дендриты не имеют миелиновой оболочки, аксоны же могут её иметь. Местом генерации возбуждения у большинства нейронов является аксонный холмик — образование в месте отхождения аксона от тела. У всех нейронов эта зона называется триггерной.

Схема строения нейрона

Синапс

Си́напс (греч. σύναψις, от συνάπτειν — обнимать, обхватывать, пожимать руку) — место контакта между двумя нейронами или между нейроном и получающей сигнал эффекторнойклеткой.

Служит для передачи нервного импульса между двумя клетками, причём в ходе синаптической передачи амплитуда и частота сигнала могут регулироваться. Одни синапсывызывают деполяризацию нейрона, другие — гиперполяризацию; первые являются возбуждающими, вторые — тормозными.

Важно

Термин был введён в 1897 г. английским физиологом Чарльзом Шеррингтоном.

Классификация

Структурная классификация

На основании числа и расположения дендритов и аксона нейроны делятся на безаксонные, униполярные нейроны, псевдоуниполярные нейроны, биполярные нейроны и мультиполярные (много дендритных стволов, обычно эфферентные) нейроны.

Безаксонные нейроны — небольшие клетки, сгруппированы вблизи спинного мозга в межпозвоночных ганглиях, не имеющие анатомических признаков разделения отростков на дендриты и аксоны. Все отростки у клетки очень похожи. Функциональное назначение безаксонных нейронов слабо изучено.

Униполярные нейроны — нейроны с одним отростком, присутствуют, например в сенсорном ядре тройничного нерва в среднем мозге.

Биполярные нейроны — нейроны, имеющие один аксон и один дендрит, расположенные в специализированных сенсорных органах — сетчатке глаза, обонятельном эпителии и луковице, слуховом и вестибулярном ганглиях.

Мультиполярные нейроны — нейроны с одним аксоном и несколькими дендритами. Данный вид нервных клеток преобладает в центральной нервной системе.

Псевдоуниполярные нейроны — являются уникальными в своём роде. От тела отходит один отросток, который сразу же Т-образно делится.

Весь этот единый тракт покрыт миелиновой оболочкой и структурно представляет собой аксон, хотя по одной из ветвей возбуждение идёт не от, а к телу нейрона. Структурно дендритами являются разветвления на конце этого (периферического) отростка.

Триггерной зоной является начало этого разветвления (то есть находится вне тела клетки). Такие нейроны встречаются в спинальных ганглиях.

Функциональная классификация

По положению в рефлекторной дуге различают афферентные нейроны (чувствительные нейроны), эфферентные нейроны (часть из них называется двигательными нейронами, иногда это не очень точное название распространяется на всю группу эфферентов) и интернейроны (вставочные нейроны).

Афферентные нейроны (чувствительный, сенсорный или рецепторный). К нейронам данного типа относятся первичные клетки органов чувств и псевдоуниполярные клетки, у которых дендриты имеют свободные окончания.

Эфферентные нейроны (эффекторный, двигательный или моторный). К нейронам данного типа относятся конечные нейроны — ультиматные и предпоследние — не ультиматные.

Ассоциативные нейроны (вставочные или интернейроны) — группа нейронов осуществляет связь между эфферентными и афферентными, их делят на интризитные, комиссуральные и проекционные.

Секреторные нейроны — нейроны, секретирующие высокоактивные вещества (нейрогормоны). У них хорошо развит комплекс Гольджи, аксон заканчивается аксовазальными синапсами.

Морфологическая классификация

Морфологическое строение нейронов многообразно. В связи с этим при классификации нейронов применяют несколько принципов:

  • учитывают размеры и форму тела нейрона;
  • количество и характер ветвления отростков;
  • длину нейрона и наличие специализированных оболочек.

По форме клетки, нейроны могут быть сферическими, зернистыми, звездчатыми, пирамидными, грушевидными, веретеновидными, неправильными и т. д. Размер тела нейрона варьирует от 5 мкм у малых зернистых клеток до 120—150 мкм у гигантских пирамидных нейронов. Длина нейрона у человека составляет от 150 мкм до 120 см.

По количеству отростков выделяют следующие морфологические типы нейронов:

  • униполярные (с одним отростком) нейроциты, присутствующие, например, в сенсорном ядре тройничного нерва в среднем мозге;
  • псевдоуниполярные клетки, сгруппированные вблизи спинного мозга в межпозвоночных ганглиях;
  • биполярные нейроны (имеют один аксон и один дендрит), расположенные в специализированных сенсорных органах — сетчатке глаза, обонятельном эпителии и луковице, слуховом и вестибулярном ганглиях;
  • мультиполярные нейроны (имеют один аксон и несколько дендритов), преобладающие в ЦНС.

Развитие и рост нейрона

Нейрон развивается из небольшой клетки-предшественницы, которая перестаёт делиться ещё до того, как выпустит свои отростки. (Однако, вопрос о делении нейронов в настоящее время остаётся дискуссионным) Как правило, первым начинает расти аксон, а дендриты образуются позже.

На конце развивающегося отростка нервной клетки появляется утолщение неправильной формы, которое, видимо, и прокладывает путь через окружающую ткань. Это утолщение называется конусом роста нервной клетки. Он состоит из уплощенной части отростка нервной клетки с множеством тонких шипиков.

Микрошипики имеют толщину от 0,1 до 0,2 мкм и могут достигать 50 мкм в длину, широкая и плоская область конуса роста имеет ширину и длину около 5 мкм, хотя форма её может изменяться. Промежутки между микрошипиками конуса роста покрыты складчатой мембраной.

Совет

Микрошипики находятся в постоянном движении — некоторые втягиваются в конус роста, другие удлиняются, отклоняются в разные стороны, прикасаются к субстрату и могут прилипать к нему.

Конус роста нейрона

Конус роста заполнен мелкими, иногда соединёнными друг с другом, мембранными пузырьками неправильной формы. Непосредственно под складчатыми участками мембраны и в шипиках находится плотная масса перепутанных актиновых филаментов. Конус роста содержит также митохондрии, микротрубочки и нейрофиламенты, имеющиеся в теле нейрона.

Вероятно, микротрубочки и нейрофиламенты удлиняются главным образом за счёт добавления вновь синтезированных субъединиц у основания отростка нейрона. Они продвигаются со скоростью около миллиметра в сутки, что соответствует скорости медленного аксонного транспорта в зрелом нейроне.

Поскольку примерно такова и средняя скорость продвижения конуса роста, возможно, что во время роста отростка нейрона в его дальнем конце не происходит ни сборки, ни разрушения микротрубочек и нейрофиламентов. Новый мембранный материал добавляется, видимо, у окончания.

Конус роста — это область быстрого экзоцитоза и эндоцитоза, о чём свидетельствует множество находящихся здесь пузырьков. Мелкие мембранные пузырьки переносятся по отростку нейрона от тела клетки к конусу роста с потоком быстрого аксонного транспорта.

Мембранный материал, видимо, синтезируется в теле нейрона, переносится к конусу роста в виде пузырьков и включается здесь в плазматическую мембрану путём экзоцитоза, удлиняя таким образом отросток нервной клетки.

Росту аксонов и дендритов обычно предшествует фаза миграции нейронов, когда незрелые нейроны расселяются и находят себе постоянное место.

Материал из Википедии — свободной энциклопедии

Источник: https://www.braintools.ru/neuron-the-structure-of-nerve-cell

Ссылка на основную публикацию
Adblock
detector