Нейрофибриллы: что это такое, строение, функции, методы обнаружения

Органеллы специального назначения. Их структура и функции

Органоиды специального назначения содержатся во многих растительных и животных клетках. К ним относятся органоиды движения (миофибриллы, реснички, жгутики, стрекательные капсулы и др.

), опорные структуры (тонофибриллы), органоиды, воспринимающие внешние раздражения (например, фоторецепторы, статорецепторы и фонорецепторы), нейрофибриллы, а также структуры клеточной поверхности, связанные с всасыванием и перевариванием пищи (микроворсинки, кутикула и др. виды).

Реснички — органеллы, представляющие собой тонкие (диаметром 0,1—0,6 мкм) волосковидные структуры на поверхности эукариотических клеток.

У многих беспозвоночных животных ими покрыта вся поверхность тела (ресничные черви, личинки кишечнополостных и губок) или отдельные его участки (например, жабры у полихет и двустворчатых моллюсков, подошва ноги у брюхоногих моллюсков). У позвоночных (в том числе человека) клетки с подвижными ресничками также есть во многих органах.

Обратите внимание

Жгутик — поверхностная структура, присутствующая у многих прокариотических и эукариотических клеток и служащая для их движения в жидкой среде или по поверхности твёрдых сред. Тонофибриллы — нитчатые образования в эпителиальных клетках животных, обеспечивают механическую прочность клеток. Миофибриллы — тонкие нити длиной более 1 см диаметром 1 мкм, расположенные пучками вдоль мышечного волокна, за счет их происходит сокращение мышц

Реснички и жгутики– это нитевидные или волосковидные выросты свободной поверхности клеток. С помощью ресничек и жгутиков клетки могут передвигаться в жидкой среде, так как эти органоиды способны совершать ритмические движения.

Если на поверхности клетки имеется большое количество волосковидных выростов небольшой длины, то их называют ресничками, если же таких выростов мало и длина их значительная, то они называются жгутиками.

У животных реснички и жгутики встречаются: а) в клетках ресничного эпителия (эпителий трахеи, некоторых отделов полового тракта); б) у сперматозоидов (у нематод и десятиногих раков спермии не имеют жгута); в) у простейших (жгутиконосцы, инфузории, корненожки). В мире растений они имеются у подвижных зооспор водорослей, мхов, папоротников, низших грибов, миксомицетов.

Клетки высших растений и высших грибов, а также споровики не имеют ресничек и жгутиков даже у мужских половых клеток. Толщина ресничек и жгутиков составляет около 200 нм (0,2 мкм). Поскольку принципиальных различий в строении ресничек и жгутиков нет, рассмотрим ультраструктуру этих образований на примере реснички. Снаружи ресничка покрыта цитоплазматической мембраной.

Внутри нее расположенааксонема (или осевой цилиндр), состоящая из микротрубочек. Нижняя проксимальная часть реснички, базальное тельце, погружена в цитоплазму. Диаметры аксонемы и базального тельца одинаковы. Базальное тельце по своей структуре совершенно сходно с центриолью и состоит из 9 триплетов микротрубочек.

Аксонема в своем составе, в отличие от базального тельца, имеет 9 пар (дублетов) микротрубочек, образующих внешнюю стенку цилиндра аксонемы. Кроме периферических дублетов микротрубочек в центре аксонемы располагается пара центральных микротрубочек. Эти две центральные микротрубочки, в отличие от периферических, не доходят до базальных телец.

Поскольку в базальных тельцах содержится сократимый белок типа актомиозина, периферические микротрубочки выполняют двигательную функцию, а центральные – только опорную. В основании ресничек и жгутиков часто встречаются корешки или кинетодесмы, представляющие собой пучки тонких (6 нм) фибрилл, обладающих поперечных исчерченностью.

Часто такие исчерченные кинетодесмы простираются от базальных телец в глубь цитоплазмы в направлении к ядру. Роль этих структур еще недостаточно выяснена. Отклонения от вышеизложенного плана строения встречаются редко, но у некоторых клеток, например, в жгутиках сперматозоидов и некоторых жгутиконосцев, обнаружены 9 дополнительных фибрилл, расположенных между центральными и периферическими микротрубочками. Эти дополнительные фибриллы соединены с трубочками аксонемы с помощью очень тонких волокон.

Миофибриллы представляют собой особые дифференцированные сократимые элементы клетки, за счет которых происходят сложные и совершенные движения мышц. Различают два типа миофибрилл: гладкие и поперечнополосатые. Оба типа миофибрилл широко распространены у многоклеточных животных и у простейших.

Важно

Поперечнополосатые миофибриллы широко известны в составе соматической и сердечной мускулатуры членистоногих и хордовых животных. Гладкие миофибриллы типичны для мускулатуры внутренних органов позвоночных и для соматических мышц многих низших беспозвоночных. Строение миофибрилл наиболее подробно изучено в поперечно-полосатых мышечных волокнах.

Миофибрилла имеет толщину 0,5 мкм и длину, которая равна от 10-20 мкм до нескольких миллиметров и даже сантиметров. В световой микроскоп видно, что пучки миофибрилл окрашиваются неравномерно: через равные промежутки длины в них видно чередование темных и светлых участков. Темные участки имеют двойное лучепреломление и называются анизотропными дисками (А-диски).

Светлые участки двойного лучепреломления не обнаруживают и называются изотропными дисками (I-диски). Каждый А-диск разделяется на две половины менее плотной, чем остальные его участки, полосой, называемой Н-зоной (полоска Ханзена). Посередине каждого I-диска проходит темная линия, называемая Z-линией (телофрагма). Участок миофибриллы между двумя Z-линиями называется саркомером.

Он является единицей строения и функционирования миофибриллы. Каждая миофибрилла состоит из пучка очень тонких нитей – миофиламентов. Различают два типа миофиламентов: толстые и тонкие. Тонкие миофиламенты имеют диаметр около 7 нм и длину около 1 мкм; они состоят в основном из белка актина. Они располагаются в пределах I-диска и заходят в А-диск до Н-зоны.

Толстые миофиламенты длиной до 1,5 мкм и толщиной около 15 нм состоят из белка миозина; они расположены только в пределах А-диска. В тонкихмиофиламентах кроме актина находятся также белки тропомиозин и тропонин. Z-линии имеют в своем составе белок α-актинин и десмин. Ни актин, ни миозин по отдельности не обладают сократительной способностью.

Актин, белок с молекулярным весом 43,5 тысяч, является глобулярным белком размером около 3 нм. В присутствии АТФ и некоторых белковых факторов он способен к агрегации в виде нитчатых структур толщиной до 7 нм. Такие актиновые фибриллы состоят из двух спиралей, обвивающих друг друга. Миозин, входящий в состав толстых нитей, – очень крупный белок (мол.

вес 470 тысяч), состоящий из шести цепей: двух длинных, спирально обвивающихся одна вокруг другой, и четырех коротких, которые связываются с концами длинных цепей и образуют глобулярные «головки». Последние обладают АТФ-азной активностью, могут реагировать с фибриллярным актином, образуя актомиозиновый комплекс, способный к сокращению.

Читайте также:  Какие показания к мрт головного мозга и сосудов головного мозга

Актиновыемиофиламенты связаны на одном конце с Z-линией, которая состоит из ветвящихся молекул белка α-актинина, образующих фибриллярную сеть, идущую поперек миофибриллы. С двух сторон к Z-линии прикрепляются концы актиновых нитей соседних саркомеров. Функция Z-линий заключается как бы в связывании соседнихсаркомеров друг с другом; Z-линии не являются сократимыми структурами.

Совет

Механизм мышечного сокращения заключается в одновременном укорачивании всех саркомеров по всей длине миофибриллы. Г. Хаксли показал, что в основе сокращения лежит перемещение относительно друг друга толстых и тонких нитей. При этом толстые миозиновые нити как бы входят в пространство между актиновыми нитями, приближая друг к другу Z-линии.

Эта модель скользящих нитей может объяснить не только сокращение поперечнополосатых мышц, но и любых сократимых структур. В гладких мышечных клетках также имеются актиновые и миозиновые нити, но они не так правильно расположены, как в исчерченных мышцах. Здесь нет саркомеров, а просто среди пучков актиновыхмиофиламентов без особого порядка располагаются миозиновые молекулы.

Тонофибриллы характерны для клеток одноклеточных организмов и для эпителиальных клеток многоклеточных животных. Электронно-микроскопическое исследование показало, что они состоят из пучка тонофиламентов – тончайших нитей с диаметром 6-15 нм.

В одном пучке может быть от 3 до нескольких сотен тонофиламентов. Тонофибриллы располагаются пучками в клетке в разных направлениях, прикрепляются либо к десмосомам, либо к любому участку цитоплазматической мембраны и никогда не переходят из одной клетки в другую.

Тонофибриллы выполняют в клетке опорную функцию.

Нейрофибриллы. Они характерны для нервных клеток (нейронов). Состоят из более тонких нитей – нейрофиламентов. В теле нейрона нейрофибриллы расположены беспорядочно, а в отростках образуют пучок параллельно длине отростка.

Из этого правила имеется всего лишь два исключения: параллельное, упорядоченное расположение нейрофибрилл в теле нейрона впервые обнаружено у бешеных животных, а затем у животных, которые впадают в спячку. Открытие нейрофибрилл привело к возникновению нейрофибриллярной теории проведения нервного возбуждения.

Сторонники этой теории считали, что нейрофибриллы являются беспрерывным проводящим элементом нервной системы. Однако в дальнейшем было установлено, что нейрофибриллы не переходят из одного нейрона в другой.

В настоящее время мы придерживаемся нейронной теории, согласно которой в проведении нервного импульса основная роль принадлежит плазмалемме нейрона, а по нейрофибриллам из тела нейрона к его окончанию передаются вещества, участвующие в образовании нервных импульсов.

А с одной клетки на другую возбуждение передается с помощью синапса (строение синапса описывалось ранее при рассмотрении коммуникационных межклеточных контактов). В синапсе возбуждение передается химическим путем с помощью медиатора.



Источник: https://infopedia.su/10x7c41.html

Что такое Нейрофиброма

Современный человек сталкивается с массой проблем – стрессы, техногенные катастрофы. Но одна проблема преследует нас еще с самого начала человеческой истории, имя ее – болезни.

Одно из довольно частых заболеваний сегодня – это развитие опухоли под названием Нейрофиброма.

В этом тексте описана гистологическая структура заболевания, сопутствующая клиническая картина, методы диагностики и, конечно же, лечения.

Обратите внимание

По своему определению, нейрофиброма – это разрастание, которое берет свое начало из Шванновских клеток нервной ткани которые являют собой периневрий и окружающую соединительную клетчатку. Это новообразование не является злокачественным, но может приводить к нежелательным осложнениям.

Морфологически они являются единичными или множественными образованиями мягкой консистенции, обнаружить которые можно как в подкожной клетчатке, так и во внутренних органах и анатомических структурах человеческого организма. Опухоль в большинстве случаев может быть коричневого или розово-коричневого цвета, иметь ножку и быть абсолютно безболезненной.

На фото: Нейрофиброма

Появление стремительно увеличивающейся в размерах нейрофибромы в периоде полового созревания в количестве более одной штуки, дает повод задуматься о наследственной патологии – нейрофиброматозе. Появления же хотя бы одной – повод обратиться к специалисту, ведь эти структуры способны озлокачествляться.

Гистопатологическое изображение кожной нейрофибромы, полученной с помощью биопсии

Большинство заболеваний поддается диагностике на 100%, ведь известна этиология и полная патогенетическая картина. Что касается нейрофибромы, это не так. Даже у современных врачей нет единой точки зрения на причины на такое распространенное заболевание, а есть только факторы, которые по мнению специалистов способны индуцировать развитие опухоли:

  • Нарушение дифференцировки клеток во время стремительного роста в периоде полового созревания.
  • Поздние сроки беременности или ранний послеродовой период, когда происходят гормональные перестройки организма женщины.
  • Перенесение различных тяжелых травм или хронической патологии.
  • В результате неполного или частичного удаления опухолей различной природы, таких как:

Как уже было сказано выше, причины изучены слабо, так же дела обстоят и с патогенезом нейрофибромы.

Считается, что при этом заболевании, проявляют себя нарушения со стороны генотипа, кодирующего нейрофибромин. Этот белок исполняет роль регуляции передачи сигнала по нервным волокнам через белки связанные с мембраной нерва. Обычно он препятствует росту клеток с нарушением дифференцировки, но при патологии генов, кодирующего этот белок, соответствующая функция утрачивается.

На сегодняшний день описана масса клинических случаев этого заболевания и разработана классификация видов нейрофибромы. Врачи выделяют следующие формы:

Этот вид опухолей произрастает внутри крупных нервных волокон. Ее капсулу образует оболочка нерва. При отграничивании этого вида нейрофибромы, происходит разрастание компонентов волокна нерва, из-за чело он приобретает вид веретена.

На фото: Инкапсулированная нейрофиброма

Чаще всего такая патология наблюдается в области мягких тканей, опухоль в таком случае выглядит как достаточно четко отграниченный плотный узел, состоящий из волокон серого и белого цвета. Они редко достигают размеров больших чем 4-5 сантиметров.

Второй вид, который называется плексиформной нейрофибромой, развивается из вытянутых леммоцитов мелких ветвей периферической нервной системы и выглядят как групповые разрастания узелков без четких границ. Развитие таких опухолей часто сочетается с нейрофиброматозом 1 типа.

Читайте также:  Синдром вегетативной дисфункции: симптомы и лечение

Обычно развитие доброкачественного новообразования не связано с бурной клинической картиной. Нейрофиброма не является исключением и наличие различных симптомов зависит от локализации, размеров и темпа роста. В типичном случае эта опухоль характеризуется медленным ростом и полным отсутствием боли.

Важно

При возникновении во внутренних органах, может наблюдаться нормальное их функционирование, увеличение органа в объеме. Появление крупных размеров опухоли обычно вызывает болезненность по ходу затронутых нервных стволов.

При росте в области позвоночника, возможно развитие боли в проекции спинномозговых корешков. В результате сдавления которых, обычно развивается состояние называемое радикулопатией.

В основном нейрофибромы возникают на коже конечностей или тела, иногда же, встречаются случае их появление и на лице, что наносит тяжелый травмирующий психологический эффект человеку. Иногда диффузный вид способен разрастаться до гигантских размеров и визуально деформировать ту или иную часть тела. Такие узлы обычно являются неподвижными и имеют мягкую консистенцию.

При появлении разрастаний на коже или в ее толще, необходимо обратиться к специалисту для проведения диагностики природы новообразования и решения вопроса о степени дифференцировки клеток (исключение онкологической патологии).

Первым делом, врач займется опросом больного на предмет травм, контактирования с различными вредоносными агентами и так далее.

Далее последует внешний осмотр, для определения локализации, цвета, формы и размеров, а так же для определения наличия критериев нейрофибромы.

Для определения наличия глубоко залегающих новообразований применяются инструментальные методы исследования такие как:

  • Компьютерная томография.
  • Магнитно-резонансная томография.
  • Ультразвуковая диагностика.

Наличие не озлокачествленной опухоли подразумевает хирургическое лечение при наличии косметических показаний, с целью недопущения нарушения клеточной дифференцировки. Так же при наличии гигантских размеров опухоли, при нарушении прилегающих органов и синдроме постоянной боли.

Более объемного и трудоемкого процесса лечения в сравнении с инкапсулированной имеет плексиформная нейрофиброма, особенно трудно лечить большие опухоли.

Проводятся такие операции при малых размерах под местным обезболиванием. Если же локализация внутренняя или размеры более 5 сантиметров, то применяется общий эндотрахеальный наркоз и проводится полноценное хирургическое вмешательство в условиях операционной.

Совет

Так же применяется лечение при помощи даитермокоагуляции, применении криодеструкции и других неинвазивных методов.

При обнаружении этого заболевания, при условии своевременной диагностики, правильного лечения и полного соблюдения назначений лечащего врача, прогноз относительно благоприятный. Ведь хорошо известно, что это заболевание хорошо поддается местной терапии.

Источник: https://ProtivRaka.su/dobrokachestvennye-opuholi/chto-takoe-nejrofibroma.html

Гистологическая характеристика нервной ткани, классификация образующих ее клеток. Особенности строения и функции нейронов и глиоцитов. Нейросекреторные клетки

Нервная ткань построена исключительно из клеток, межклеточ-ного вещества у нее почти нет. Клетки нервной ткани подразделяются на два типа – нейроны (нейроциты) и глиоциты (нейроглия).

Нейроны способны генерировать и проводить нервные импульсы, тогда как нейроглия обеспечивает вспомогательные функции.

Нервная ткань имеет эктодермальное происхождение, достаточно рано обособляясь в эмбриогенезе в виде нервной трубки.

Нейроны представляют собой крупные отростчатые клетки, причем многие из них полиплоидные. Тело нейрона называется перикарионом. Он содержит крупное округлое ядро с мелкодисперсным хроматином и 12 ядрышка.

В цитоплазме (нейроплазме) имеются многочисленные митохондрии и пластинчатый комплекс диффузного типа с множеством диктиосом, окружающих ядро.

В нейроплазме при специальных методах окрашивания обнаруживаются два вида структур, характерных только для нейронов – тигроид (вещество Ниссля) и нейрофибриллы.

В световом микроскопе тигроид наблюдается в виде базофиль-ных пятен различного размера и плотности, заполняющих перикарион. При использовании электронного микроскопа становится очевидным, что на ультраструктурном уровне тигроид состоит из уплощенных цистерн гранулярной плазматической сети.

Обратите внимание

К цистернам с наружной стороны прикреплены многочисленные рибосомы. Наличие подобных структур в нейроне свидетельствует об интенсивном синтезе белков. Нейрофибриллы выявляются в нейронах после обработки солями серебра. Они образованы промежуточными филаментами (нейрофиламентами) и микротрубочками.

Нейрофибриллы в отличие от тигроида находятся не только в перикарионе, но и в отростках. Эти структуры формируют в нейроне мощную систему внутриклеточного транспорта, обеспечивающего перемещение везикул на периферию отростков (антероградный транспорт) и обратно (ретроградный транспорт).

Специфическим моторным белком в этом транспорте служит аналог динеина кинезин.

Нейроны классифицируют по числу отростков на униполярные, псевдоуниполярные, биполярные и мультиполярные. У человека наиболее часто встречаются биполярные нейроны  клетки с двумя отростками.

Отростки у нейронов бывают двух видов – аксоны и дендриты. Аксон (нейрит) в нейронах позвоночных всегда один. Он начинается в перикарионе с небольшого расширения, которое называется аксональным холмиком. Его легко отличить от остальной части перикариона по отсутствию тигроида. Аксон не ветвится и может достигать длины до 1,5 м.

В цитоплазме аксона имеются многочисленные микротрубочки, канальцы гладкой плазматической сети, митохондрии и мелкие пузырьки. В области аксонального холмика возникает нервный импульс, который движется на периферию аксона. Поэтому аксоны называются двигательными (центробежными, или эфферентными) отростками.

В физическом плане нервный импульс представляет собой волну деполяризации плазмолеммы нейрона (потенциал действия). Дендриты отличаются от аксонов способностью ветвиться, а также наличием боковых выступов – шипиков. Последние представляют собой выступы плазмолеммы дендрита, которые содержат систему плоских цистерн и мембран, ориентированных перпендикулярно поверхности.

Шипики участвуют в формировании межнейронных контактов, но, какие при этом они выполняют функции, остается неизвестным. Дендритов в нейроне может быть несколько. Этот вид отростков способен генерировать нервный импульс на периферии и проводить его к перикариону. Поэтому дендриты называются чувствительными (центростремительными, или афферентными) отростками.

Нейроны с помощью аксонов и дендритов связаны в нервной системе в сложные сетевые структуры, которые могут с высокой скоростью обрабатывать большие объемы информации.

Важно

В нервной системе встречаются также особые нейроны, которые называются нейросекреторными клетками.

Секретируемые ими пептиды синтезируются в перикарионе тигроидом и оформляются пластинчатым комплексом в секреторные гранулы, которые перемещаются по аксону на периферию.

Читайте также:  Чечевицеобразное ядро головного мозга (nucleus lentiformis): функции, структура, возможные патологии

Концевые разветвления аксонов нейросекреторных клеток, заканчивающиеся на базальной пластинке капилляров, выделяют эти гормоны в кровь.

У человека нейросекреторные клетки сконцентрированы в гипоталамусе, где их перикарионы образуют супраоптическое и паравентрикулярное ядра. В гипоталамусе происходит секреция либеринов и статинов – пептидных гормонов, которые контролируют аденогипофиз. Аксоны нейросекреторных клеток гипоталамуса направляются в заднюю и промежуточную доли гипофиза, где они выделяют ряд других гормонов.

В отличие от нейронов глиальные клетки нервной ткани не способны генерировать и проводить нервные импульсы. Однако они не менее важны для нормальной работы нервной системы, выполняя такие функции как опорная, изолирующая, разграничительная, трофическая, гомеостатическая, репаративная и защитная.

Классификация и функции клеток нейроглии

Макроглия Микроглия

Астроциты (формируют гематоэнцефалический барьер) защитные

Эпендимоциты (выстилают желудочки и канал мозга) функции

Олигодендроциты (питают и изолируют нейроны)

Астроцитарная глия представлена плазматическими и волокнистыми астроцитами (астроглиоцитами). Плазматические астроциты находятся в сером веществе мозга, имеют перикарион диаметром 1520 мкм с крупным овальным ядром, а также короткие широкие отростки, которые заканчиваются на сосудах, нейронах и олигодендроцитах.

Гранулярная плазматическая сеть развита у астроцитов слабо, микротрубочек и промежуточных филаментов мало, однако имеются многочисленные митохондрии и включения гликогена. Волокнистые астроциты находятся в белом веществе мозга.

Они имеют перикарион диаметром 1020 мкм и многочисленные дихотомически ветвящиеся тонкие отростки. Длинные отростки этих клеток заканчиваются на сосудах, а короткие отростки контактируют с мягкой оболочкой мозга, формируя краевую глию.

Совет

В цитоплазме волокнистых астроцитов органоидов мало, за исключением пучков промежуточных филаментов в отростках. Митохондрии этих клеток часто имеют не-правильную форму.

Как плазматические, так и волокнистые астроциты выполняют опорную и разграничительную функции, изолируя тела и отростки нейронов от внешних воздействий. Астроциты также формируют гематоэнцефалический барьер – физиологический фильтр со специфической проницаемостью, который на уровне сосудистого русла отделяет нервную систему от остального организма.

Эпендимная глия образует выстилку желудочков мозга и цен-трального канала головного и спинного мозга. Эпендимоциты представляют собой клетки кубической формы с ресничками на апикальной поверхности и отростком на базальном конце.

Ядра в клетках смещены к базальному концу, а гранулярная плазматическая сеть – к апикальному концу. Отростки эпендимоцитов могут иметь различную степень ветвления и длину, некоторые из них проходят через весь мозг, соединяясь с отростками других глиальных клеток.

Эпендимоциты секретируют компоненты цереброспинальной жидкости и биением ресничек содействуют ее току.

Олигодендроциты (малоотростчатая глия) имеют небольшие размеры и незначительное число коротких отростков. Этих клеток много как в сером, так и в белом веществе.

К ним, в частности, отно-сятся глиоциты-сателлиты, которые локализованы на поверхности перикариона нейрона, и леммоциты (шванновские клетки), формирующие оболочки нервных волокон Олигодендроциты, которые в белом веществе располагаются между нервными волокнами, называются интерфасцикулярными клетками.

Олигодендроциты участвуют также в формировании нервных рецепторов. Это тип нейроглии отличается выраженной способностью к набуханию, что лежит в основе патогенеза мозгового отека. Функции олигодендроцитов заключаются в обеспечении питания нейронов, их изоляции и гомеостатировании нервной системы.

Обратите внимание

Астроцитам, эпендимоцитам и олигодендроцитам макроглии противопоставляется микроглия. В отличие от макроглии клетки микроглии способны к активному движению и фагоцитозу. Они имеют небольшие размеры и тонкие неветвящиеся отростки, с помощью которых прикрепляются к сосудам. Клетки микроглии выполняют защитные и репаративные функции.

В частности, они способны фагоцитировать бактерии, а также погибшие нейроны и поврежденные участки нервных волокон. Раннее предполагалось мезенхимное происхождение микроглии, и ее клетки рассматривались как специализированные макрофаги нервной ткани.

В настоящее время более вероятным считается нейрогенное происхождение микроглии

53) Строение мякотных и безмякотных нервных волокон. Механизм образования миелиновой оболочки в эмбриогенезе.

Различают два типа нервных волокон – мякотные (миелиновые) и безмякотные. Безмякотные нервные волокна обнаруживаются в основном в составе вегетативной системы. Они имеют несколько (3 и более) осевых цилиндров, которые окружены цепочкой леммоцитов.

Каждый осевой цилиндр как бы подвешен на мезаксоне  складке, образованной смыкающимися участками плазмолеммы глиальной клетки. Леммоциты покрывают осевые цилиндры на всем их протяжении за исключением нервных окончаний.

Они обеспечивают изоляцию отростков нейронов от окружающей среды, способствуя проведению нервного импульса на значительное расстояние. Скорость проведения нервного импульса по безмякотным нервным волокнам составляет около 1 м/сек.

Мякотные (миелиновые) нервные волокна обнаружены в составе как центральной, так и периферической системы. Они имеют только один осевой цилиндр, представляющий собой аксон или дендрит, погруженный в цепочку леммоцитов. Осевой цилиндр окружен мякотной, или миелиновой оболочкой.

В электронном микроскопе видно, что миелиновая оболочка состоит из слоев  плотно прилегающих друг к другу участков плазмолеммы глиальной клетки толщиной 12 нм. Химический состав мембран миелиновой оболочки отличается высоким содержанием липидов, в особенности холестерола и цереброзидов.

Между миелиновой оболочкой и наружным участком плазмолеммы леммоцита имеется тонкий слой цитоплазмы  шванновская оболочка. У мякотного волокна один мезаксон.

Важно

Леммоциты покрывают осевой цилиндр нервного волокна по всей его длине, тогда как миелиновая оболочка регулярно прерывается. Участки, где миелиновая оболочка отсутствует, несколько тоньше всего волокна, здесь проходит граница между двумя соседними леммоцитами. Эти участки называются кольцевыми перехватами, или перехватами Ранвье.

В районе кольцевого перехвата внутри нервного волокна обна-руживаются косые тонкие полосы. Эти структуры обозначаются как насечки неврилеммы (насечки Лантермана).

Они представляют собой складки плазмолеммы глиальной клетки на краю миелиновой оболочки. В этом участке оболочки ее соседние слои переходят друг в друга.

В белом веществе мякотные волокна не имеют насечек неврилеммы из-за того, что вместо леммоцитов оболочку мякотного волокна формируют отличающиеся от них олигодендроциты мозга.

Скорость проведения нервного импульса по мякотным волокнам достигает 100 м/сек и более.

Источник: https://cyberpedia.su/12xbca4.html

Ссылка на основную публикацию
Adblock
detector